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Vector superspace

V = V0̄ ⊕ V1̄, Z2 = {0̄, 1̄}

Homogeneous elements: x ∈ V0̄ ∪ V1̄

x ∈ V0̄ is called even, |x | = 0̄;

x ∈ V1̄\{0} is called odd, |x | = 1̄;

The vectors e1, ..., en+m form a basis of V if e1, ..., en is a basis of

V0̄ and en+1, ..., en+m is a basis of V1̄

dim V = dim V0̄| dim V1̄ = n|m
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V and W are vector superspaces ⇒ V ⊗W is a vector superspace:

(V ⊗W )0̄ = (V0̄ ⊗W0̄)⊕ (V1̄ ⊗W1̄)

(V ⊗W )1̄ = (V0̄ ⊗W1̄)⊕ (V1̄ ⊗W0̄)
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V and W are vector superspaces ⇒ Hom(V ,W ) is a vector

superspace:

Hom(V ,W )0̄ = Hom(V0̄,W0̄)⊕Hom(V1̄,W1̄)

= {f ∈ Hom(V ,W )
∣∣ |f (x)| = |x |} (morphisms)

Hom(V ,W )1̄ = Hom(V0̄,W1̄)⊕Hom(V1̄,W0̄)

= {f ∈ Hom(V ,W )
∣∣ |f (x)| = |x |+ 1̄, x 6= 0}
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For V = V0̄ ⊕ V1̄ consider the superspace

ΠV = (ΠV )0̄ ⊕ (ΠV )1̄ = V1̄ ⊕ V0̄

Π(ΠV ) = V
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A vector supersubspace W ⊂ V is a vector subspace that is a

vector superspace such that

W = W0̄ ⊕W1̄

and

W0̄ ⊂ V0̄, W1̄ ⊂ V1̄.
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Superalgebra

A = A0̄ ⊕ A1̄

· : A⊗ A→ A

· ∈ Hom0̄(A⊗ A,A), i.e. |x · y | = |x |+ |y |.

In other words,

A0̄ · A0̄, A1̄ · A1̄ ⊂ A0̄, A0̄ · A1̄, A1̄ · A0̄ ⊂ A1̄.
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A superalgebra A is called commutative if

xy = (−1)|x ||y |yx ,

x , y ∈ V0̄ ∪ V1̄.
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Sign rule:

If in a formula something of a parity p moves through something

of a parity q, then the sign (−1)pq appears.

Example. Commutative algebra: xy = yx ;

commutative superalgebra: xy = (−1)|x ||y |yx .
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Important example. The Grassmann superalgebra Λ(m):

Consider the algebra Λ(m) with the generators 1, ξ1, ..., ξm and the

relations

ξαξβ + ξβξα = 0

In particular, ξ2
α = 0. Any f ∈ Λ(m) has the form

f = f0 +
m∑
r=1

∑
1≤α1<···<αr≤m

fα1···αr ξα1 · · · ξαr , f0, fα1···αr ∈ R.

Let |1| = 0̄, |ξα| = 1̄ and assume |xy | = |x |+ |y |. Then Λ(m)

becomes a commutative superalgebra.
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We may start with the vector space Rm with a basis ξ1, ..., ξm,

than the exterior algebra

Λ(m) = ⊕m
i=0ΛiRm

together with the Z2-grading

Λ(m) = Λeven ⊕ Λodd

is the Grassmann superalgebra.
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Lie superalgebra:

g = g0̄ ⊕ g1̄,

[·, ·] : g⊗ g→ g, |[x , y ]| = |x |+ |y |

1) [x , y ] = −(−1)|x ||y |[y , x ]

2) [[x , y ], z ] + (−1)|x |(|y |+|z|)[[y , z ], x ] + (−1)|z|(|x |+|y |)[[z , x ], y ] = 0

⇒ g0̄ is a Lie algebra and g1̄ is a g0̄-module
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More about the sign rule:

Consider auxiliary anticommuting odd parameters η1, ..., ηN .

If x1, x2... are odd elements, replace them by η1x1, η2x2..., and do

all computations as usually with even elements. No need to

remember the sign rule! Note that then we work not over R, but

over Λ(N).
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Example: get the definition of a commutative superalgebra:

x , y ∈ A0̄, u, v ∈ A1̄. Consider x , y , η1u, η2v .

x(η1u) = (η1u)x ⇒ η1xu = η1ux ⇒ xu = ux

(η1u)(η2v) = (η2v)(η1u)⇒ η1η2uv = η2η1vu

⇒ η1η2uv = −η1η2vu ⇒ uv = −vu

Recall that zw = (−1)|z||w |wz , z ,w ∈ A.

Similarly for a Lie superalgebra g, let u, v ∈ g1̄, then

[η1u, η2v ] = −[η2v , η1u]⇒ η1η2[u, v ] = −η2η1[v , u]

⇒ η1η2[u, v ] = η1η2[v , u]⇒ [u, v ] = [v , u].

Anton Galaev Intoduction to Supergeometry



Linear superalgebra
Superdomains

Supermanifolds
Supersymmetries

Lie superalgebras
Lie superalgebras of vector fields on R0|m

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Example. K = R or C, Kn|m = Kn ⊕ Π(Km)

gl(n|m,K) =


A B

C D


gl(n|m,K)0̄ =


A 0

0 D

 ' gl(n,K)⊕ gl(m,K)

gl(n|m)1̄ =


0 B

C 0

 ' (Kn ⊗ (Km)∗)⊕ ((Kn)∗ ⊗Km)

[X ,Y ] = XY − (−1)|X ||Y |YX
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Example. Let M =

A B

C D

 ∈ gl(n|m,R).

Define the supertrace strM = trA− trD.

sl(n|m,R) = {M ∈ gl(n|m,R)|strM = 0}.

If m 6= n, then sl(n|m,R) is simple.

For m = n the Lie superalgebra psl(n|n,R) = sl(n|n,R)/RE2n is

simple (but it is not a supersubalgebra of gl(n|m,R)).
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Example from differential geometry. Let M be a smooth manifold,

X a fixed vector field on M and Ω∗(M) = ⊕n
k=0Ωk(M) the space

of differential forms on M. The R-linear operators

d , LX , iX : Ω∗(M)→ Ω∗(M)

satisfy

LX = iX ◦ d + d ◦ iX , LX ◦ iX = iX ◦ LX , LX ◦ d = d ◦ LX .

Let g = g0̄ ⊕ g1̄, g0̄ = RLX , g1̄ = Rd ⊕ RiX .

Then g is a Lie superalgebra with the only non-zero Lie

superbracket

[d , iX ] = LX .
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Bilinear forms on a vector superspace.

Let g : V ⊗ V → R be a bilinear form on the superspace V .

g is symmetric if g(y , x) = (−1)|x ||y |g(x , y);

g is skew-symmetric if g(y , x) = −(−1)|x ||y |g(x , y);

g is even if g(V0̄,V1̄) = g(V1̄,V0̄) = 0;

g is odd if g(V0̄,V0̄) = g(V1̄,V1̄) = 0.
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Let g be an even non-degenerate symmetric on

Rn|m = Rn ⊕ Π(Rm),

i.e. g(Rn,Π(R2k)) = g(Π(R2k),Rn) = 0,

the restriction of g to Rn is non-degenerate and symmetric (with

some signature (p, q), p + q = n),

the restriction of g to Π(Rm) is non-degenerate and

skew-symmetric, i.e. m = 2k .

The orthosymplectic Lie superalgebra

osp(p, q|2k )̄i = {ξ ∈ gl(n|2k ,R)̄i | g(ξx , y) + (−1)|x |̄ig(x , ξy) = 0}.
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Let e.g. the restriction of g to Rn be positive definite

g =


1n 0 0

0 0 1k

0 −1k 0

 .

Then,

osp(n|2k ,R) =




A B1 B2

Bt
2 C1 C2

−Bt
1 C3 −C t

1


∣∣∣∣∣∣∣∣∣At = −A,C t

2 = C2,C
t
3 = C3

 .

osp(p, q|2k) = (so(p, q)⊕ sp(2k,R))⊕ Rp,q ⊗ R2k
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Consider an odd non-degenerate supersymmetric form g on

Rn|n = Rn ⊕ Π(Rn), i.e. g(Rn,Rn) = g(Π(Rn),Π(Rn)) = 0, and

g(x0, x1) = g(x1, x0) for all x0 ∈ Rn, x1 ∈ Π(Rn).

There exists a basis of Rn ⊕ Π(Rn) such that g =

 0 1n

1n 0

 .

The periplectic Lie superalgebra:

pe(n,R) =


 A B

C −At

∣∣∣∣∣∣B = −Bt ,C = C t


pe(n,R) = gl(n,R)⊕ (S2Rn ⊕ Λ2(Rn)∗)

spe(n,R) = pe(n,R) ∩ sl(n|n,R) is simple.
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Consider an odd non-degenerate skew-symmetric form g on

Rn ⊕ Π(Rn). There exists a basis of Rn ⊕ Π(Rn) such that

g =

 0 1n

−1n 0

 .

pesk(n,R) =


 A B

C −At

∣∣∣∣∣∣B = Bt ,C = −C t

 .

pesk(n,R) ' pe(n,R).
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Let J be an odd complex structure on Rn|n = Rn ⊕Π(Rn), i.e. J is

an odd isomorphism of Rn ⊕ Π(Rn) with J2 = − id.

The queer Lie superalgebra q(n,R) is the subalgebra of gl(n|n,R)

commuting with J.

There exists a basis of Rn ⊕ Π(Rn) such that J =

 0 1n

−1n 0

 .

Then,

q(n,R) =


 A B

B A

 , sq(n,R) =


 A B

B A

∣∣∣∣∣∣ trB = 0


psq(n,R) = sq(n,R)/RE2n is simple.
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Examples of exceptional simple Lie superalgebras:

g = G (3), g0̄ = G (2)⊕ sl(2,C), g1̄ = C7 ⊗ C2;

g = F (4), g0̄ = spin(7)⊕ sl(2,C), g1̄ = C8 ⊗ C2.

Anton Galaev Intoduction to Supergeometry



Linear superalgebra
Superdomains

Supermanifolds
Supersymmetries

Lie superalgebras
Lie superalgebras of vector fields on R0|m

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

Let V be a purely odd vector space, i.e. V = V1̄. By definition,

S2V ∗ = {b : V ⊗ V → R | b(x , y) = (−1)|x ||y |b(y , x)},

but |x | = |y | = 1̄, if x , y 6= 0. This shows that b(x , y) = −b(y , x),

S2V ∗ = Λ2ΠV ∗, S2V = Λ2ΠV .

Similarly,

Λ2V = S2ΠV .
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The odd vector superspace R0|m as the first example of a

supermanifold 0 Consider Rn. This is both a vector space and a

smooth manifolds. The algebra of smooth functions on Rn

contains the dense subset of polynomial functions:

S∗(Rn)∗ = ⊕∞k=0Sk(Rn)∗ ⊂ C∞(Rn).

Consider the odd vector space R0|m = ΠRm. Then

S∗(ΠRm)∗ = ⊕∞k=0Sk(ΠRm)∗ = ⊕∞k=0Λk(Rm)∗ = Λ∗(Rm)∗ = Λ(m).
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By this reason,

C∞(R0|m) = Λ(m).

Any f ∈ C∞(R0|m) has the form

f = f0 +
m∑
r=1

∑
1≤α1<···<αr≤m

fα1···αr ξ
α1 · · · ξαr , f0, fα1···αr ∈ R.

The functions ξα should play the role of coordinate functions on

the ”manifold” R0|m. But

ξαξβ + ξβξα = 0, (ξα)2 = 0,

i.e. these coordinate functions can not take real values (except 0).

Since the coordinate functions should parametrise the points, we

get only one point 0 in our ”manifold”.
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By definition, R0|m is a supermanifold of superdimension 0|m; it is

a pair

R0|m = ({0},Λ(m)),

where 0 is the only point of R0|m and Λ(m) is the algebra of

superfunctions on R0|m.

Define the value at the point 0 of the superfunction f ∈ C∞(R0|m)

of the form

f = f0 +
m∑
r=1

∑
1≤α1<···<αr≤m

fα1···αr ξ
α1 · · · ξαr , f0, fα1···αr ∈ R

by

f (0) := f0 ∈ R.
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Consider the tangent space

T0R0|m = {A : C∞(R0|m)→ R |A(fg) = (Af )g(0)+(−1)|A||f |f (0)(Ag)}.

Exercise. The odd vectors (∂α)0 acting by (∂α)0f = (∂αf )0 form a

basis of T0R0|m, i.e.

T0R0|m = R0|m.
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Vector fields on R0|m:

TR0|m = {A : C∞(R0|m)→ C∞(R0|m) |A(fg) = (Af )g+(−1)|A||f |f (Ag)}.

Define the odd vectorfields ∂
∂ξα = ∂α assuming ∂αξ

β = δβα.

Exercise. TR0|m = Λ(m)⊗R spanR{∂1, ..., ∂m} = Λ(m)⊗R R0|m.

Define the Lie superbrackets by

[A,B] = A ◦ B − (−1)|A||B|B ◦ A.

The Lie superalgebra TR0|m with this brackets is denoted by

vect(0|m,R). It is a finite-dimensional Lie superalgebra. For m ≥ 2

it is simple.
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For X = Xα∂α ∈ vect(0|m,R) define its divergence

divX =
∑
α

(−1)|X
α|∂αXα.

Define the special (divergence-free) vectorial Lie superalgebra

svect(0|m) = {X ∈ vect(0|m,R) |divX = 0}.

It is simple for m ≥ 3.
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Let m = 2k . Consider the 2-form ω =
∑k

α=1 dξα ◦ dξα+k . Assume

|dξα| = 0̄, dξα ◦ dξβ = dξβdξα.

Define the Lie superalgebra of Hamiltonian vector fields

h̃(0|2k ,R) = {X ∈ vect(0|2k ,R) | LXω = 0}.

The Lie superalgebra h(0|2k ,R) = [h̃(0|2k ,R), h̃(0|2k ,R)] is

simple.
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Classification of finite dim. simple complex Lie superalgebras:

• classical type, i.e. the g0̄-module g1̄ is completely reducible

sl(n|m,C), psl(n|n,C), osp(n|2m,C), pe(n,C), G (3), F (4),...

• Cartan type

vect(0|n,C), svect(0|n,C), h(0|2k ,C)...

V. G. Kac, Lie superalgebras. Adv. Math., 26 (1977), 8–96.

L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie

Superalgebras, arXiv:hep-th/9607161
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Peculiarities:

• zero Killing form e.g. on psl(n|n,C), pe(n,C);

• in general no total reducibility of simple LSA;

• semisimple LSA are of the from
∑

gi ⊗ Λ(ni );

• there exist non-trivial irreducible representation of solvable LSA
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The state of a quantum mechanical system is represented by a unit

vector (defined up to a phase, i.e. a complex number of length 1)

in a complex Hilbert space H.

Let H describe the state of a single particle. Then the states of

two identical particles v and v ′ is described by the tensor product

H ⊗ H.

Since the particles are identical, the states

v ⊗ v ′ and v ′ ⊗ v

must be the same.
Anton Galaev Intoduction to Supergeometry



Linear superalgebra
Superdomains

Supermanifolds
Supersymmetries

Lie superalgebras
Lie superalgebras of vector fields on R0|m

About quantum particles and supersymmetry
Modules over supercommutative superalgebras

But the state is defined up to a phase, consequently

v ′ ⊗ v = λv ⊗ v ′.

Applying this twice, we get λ2 = 1, i.e. λ = ±1.

If λ = 1, then the particle is called boson. Two identical bosons

are described by a vector in S2H.

If λ = −1, then the particle is called fermion. Two identical

fermions are described by a vector in Λ2H.
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To unify the bosons and fermions consider the Hilbert superspace

H = H0̄ ⊕ H1̄,

Where H0̄ describes a boson and ΠH1̄ describes a fermion.

Then

S2H = S2H0̄

⊕
H0̄ ⊗ H1̄

⊕
S2H1̄.

But S2H1̄ = Λ2ΠH1̄.

Thus the summands of S2H describe two bosons, or a boson and a

fermion, or two fermions.

The sign rule of superalgebra encodes the statistics of a particle!
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Let A be a supercommutative superalgebra and M be a real vector

superspace.

M is a left A-supermodule if there exists a morphism

· : A⊗R M → M, (a, x) 7→ a · x , |a · x | = |a|+ |x |.

M can be also considered as a right A-supermodule if we put

x · a = (−1)|x ||a|a · x .
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Let M and N be A-supermodules.

A homogeneous map ϕ : M → N is called A-linear if

ϕ(ax) = (−1)|ϕ||a|aϕ(x).

Equivalently,

ϕ(xa) = ϕ(x)a.

Denote by HomA(M,N) the vector superspace of all A-linear maps

from M to N, and set EndA(M) = HomA(M,M).
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We say that M over A is free of rank n|m if there exists a basis

e1, ..., en+m of M over A such that e1, ..., en ∈ M0̄ and

en+1, ..., en+m ∈ M1̄.

This means that for any x ∈ M there exist x1, ..., xn+m ∈ A such

that

x =
n+m∑
a=1

xaea.
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Let M and N be free A-supermodules of ranks m|n and r |s. For an

A-linear map ϕ : M → N define ϕb
a ∈ A, a = 1, ..., n + m,

b = 1, ..., r + s such that

ϕ(ea) =
r+s∑
b=1

fbϕ
b
a .

We get an r + s × n + m matrix with elements from A.
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Let x =
∑n+m

a=1 eaxa ∈ M, y = ϕ(x) =
∑r+s

b=1 fbyb ∈ N then

ϕ(x) = ϕ

(
n+m∑
a=1

eaxa

)
=

n+m∑
a=1

ϕ(ea)xa =
n+m∑
a=1

r+s∑
b=1

fbϕ
b
axa.

We get that

yb =
n+m∑
a=1

ϕb
axa.

In the matrix form
y 1

...

y r+s

 =


ϕ1

1 · · · ϕ1
n+m

...
...

ϕr+s
1 · · · ϕr+s

n+m

 ·


x1

...

xn+m

 .
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Since we have the decompositions M = M0̄ ⊕M1̄ and

N = N0̄ ⊕N1̄, the map ϕ can be divided into 4 parts. According to

that we may write

ϕ =

ϕ0̄0̄ ϕ0̄1̄

ϕ1̄0̄ ϕ1̄1̄

 =


ϕ1

1 · · · ϕ1
n+m

...
...

ϕr+s
1 · · · ϕr+s

n+m

 .

ϕ is even if and only if the entries of the matrices ϕ0̄0̄ and ϕ1̄1̄ are

even and the entries of the matrices ϕ1̄0̄ and ϕ0̄1̄ are odd.
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The dual space: M∗ = HomA(M,A).

For ϕ ∈ HomA(M,N) define ϕ∗ ∈ HomA(N∗,M∗),

ϕ∗(ξ) = (−1)|ϕ||ξ|ξ ◦ ϕ.

Then the matrix of ϕ∗ w.r.t. the dual bases f ∗b and e∗a has the

form (exercise)  ϕt
0̄0̄

(−1)|ϕ|+1ϕt
1̄0̄

(−1)|ϕ|ϕt
0̄1̄

ϕt
1̄1̄

 .
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Let L be an r + s × n + m matrix with elements form A

L =

L0̄0̄ L0̄1̄

L1̄0̄ L1̄1̄


(i.e. it can be the matrix of a homomorphism from M to N)

We say that L is even if the entries of the matrices L0̄0̄ and L1̄1̄ are

even and the entries of the matrices L1̄0̄ and L0̄1̄ are odd.

Define the supertransposed matrix

Lst =

 Lt
0̄0̄

(−1)|L|+1Lt
1̄0̄

(−1)|L|Lt
0̄1̄

Lt
1̄1̄

 .
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Consider set MatA(n|m) of all squire matrices of order n + m with

elements from A. It becomes an A-supermodule with respect to

the multiplication

aL =

 aL0̄0̄ aL0̄1̄

(−1)|a|aL1̄0̄ (−1)|a|aL1̄1̄

 .
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For a homogenious L =

L0̄0̄ L0̄1̄

L1̄0̄ L1̄1̄

 define the supertrace

strL = tr L0̄0̄ − (−1)|L| tr L1̄1̄.

Proposition. str([K , L]) = 0.
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The group

GLA(n|m) = {L ∈ MatA(n|m) | |L| = 0̄, L is invertible}

is called general linear supergroup of rank n|m over A.

Example. GLR(n|m) = GL(n,R)×GL(m,R).

Theorem. Let L ∈ MatA(n|m). Then L ∈ GLA(n|m) if and only if

L0̄0̄ and L1̄1̄ are invertible.
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Let B =

B00 B01

B10 B11

 be a usual real matrix. Suppose that B11 is

invertible, then

B =

1 B01B−1
11

0 1

B00 − B01B−1
11 B10 0

B10 B11

 ,

consequently,

det B = det(B00 − B01B−1
11 B10) · det B11.
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For L ∈ GLA(n|m) define its superdeterminant or Berezian

BerL = det(L0̄0̄ − L0̄1̄L−1
1̄1̄

L1̄0̄) · det L−1
1̄1̄
∈ A0̄.

Theorem. Ber(KL) = Ber(K ) · Ber(L).

Ber(En+m + εL) = 1 + εstrL, ε2 = 0.

Ber exp L = estrL.
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A superdomain of dimension n|m

U = (U,C∞(U)), U ⊂ Rn, C∞(U) = C∞(U)⊗ Λ(m).

Let ξ1, ..., ξm be generators of Λ(m), then any f ∈ C∞(U) can be

written as

f = f̃ +
m∑
r=1

∑
α1<···<αr

fα1...αr ξ
α1 · · · ξαr , f̃ , fα1...αr ∈ C∞(U).

x ∈ U ⇒ f (x) := f̃ (x) ∈ R.
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A morphism of superdomains:

ϕ : U = (U,C∞(U))→ V = (V ,C∞(V))

is a pair

ϕ = (ϕ̃, ϕ∗), ϕ̃ : U → V , ϕ∗ : C∞(V)→ C∞(U)

such that

(ϕ∗f )(x) = f (ϕ̃(x)).
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If ψ = (ψ̃, ψ∗) : V → W is another morphism, then the

decomposition is defined as

ψ ◦ ϕ = (ψ̃ ◦ ϕ̃, ϕ∗ ◦ ψ∗) : U → W.

ϕ : U → V is called a diffeomorphism if it admits an inverse

morphism.
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Example.

The inclusion

i = (̃i , i∗) : U → U , ĩ(x) = x , i∗(f ) = f̃ .

The projection

p = (p̃, p∗) : U → U, p̃(x) = x , p∗(f ) = f .
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Proposition. For any morphism of superalgebras

ϕ∗ : C∞(V)→ C∞(U) there exists a unique continuous map

ϕ̃ : U → V such that ϕ = (ϕ̃, ϕ∗) is a morphism from U to V.

Proof. The composition

C∞(V )→ C∞(V)→ C∞(U)→ C∞(U)

defines map ϕ : U → V , which is compatible with ϕ∗.
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Corollary. For any morphism s : C∞(U)→ R there exists a unique

point x ∈ U such that s(f ) = f (x).

Proof. Since R = C∞(pt), ϕ∗ = s defines ϕ : pt→ U .

Let x = ϕ̃(pt) ∈ U.

Since ϕ∗(f ) ∈ R,

ϕ∗(f ) = ϕ∗(f )(pt) = f (ϕ̃(pt)) = f (x).
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Systems of coordinates.

Consider a superdomain U = (U,C∞(U) = C∞(U)⊗ Λ(m)).

Let x1, ..., xn be coordinates on U; ξ1, ..., ξm odd generators

of Λ(m).

The superfunctions x1, ..., xn, ξ1, ..., ξm are called coordinates on U .

Denotation (x i , ξα), or (xa), xn+α = ξα.
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Vector fields on U . TU = (TU )0̄ ⊕ (TU )1̄,

(TU )̄i =

X : C∞(U)→ C∞(U)

∣∣∣∣∣∣ |X | = ī , X is R-linear

X (fg) = X (f )g + (−1)|f ||X |fX (g)


Define the vector fields ∂x i and ∂ξα assuming

∂x i (f ξα1 · · · ξαr ) =
∂f

∂x i
ξα1 · · · ξαr ,

∂ξα(f ξα1 · · · ξαr ) =
r∑

s=1

(−1)s−1δααs f ξα1 · · · ξ̂αs · · · ξαr .
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Proposition. The C∞(U)-module TU is free of rank n|m.

TU = C∞(U)⊗R spanR{∂x1 , ..., ∂ξm}.

Proof. Let X ∈ TU . We claim that X = (Xxa)∂a.

Consider

X ′ = X − (Xxa)∂a, X ′(fg) = X ′(f )g + (−1)|f ||X
′|fX ′(g).

For f ∈ C∞(U) let X ′(f ) =
∑

X ′α1,...,αr
(f )ξα1 · · · ξαr ,

then X ′α1,...,αr
: C∞(U)→ C∞(U),

X ′α1,...,αr
(fg) = X ′α1,...,αr

(f )g + fX ′α1,...,αr
(g), X ′α1,...,αr

(x i ) = 0,

=⇒ X ′α1,...,αr
= 0, X ′(f ) = 0.

Moreover, X ′(ξα) = 0 =⇒ X ′ = 0.
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Lemma. Let ϕ : U → V be a morphism, then

∂

∂xa
(ϕ∗f ) =

∑
b

∂ϕ∗(yb)

∂xa
ϕ∗
(
∂f

∂yb

)
,

f ∈ C∞(V).
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Theorem. If ϕ : U → V is a morphism and y 1, ..., y r , η1, ..., ηs are

coordinates on V, then the functions

ϕ∗(y 1), ..., ϕ∗(y r ), ϕ∗(η1), ..., ϕ∗(ηs) uniquely define ϕ.

Proof. Note: if g =
∑

gα1,...,αpξ
α1 · · · ξαp ∈ C∞(U), then

gα1,...,αp = (∂ξαp · · · ∂ξα1 g)∼.

First let f = f (y 1, ..., y r ) ∈ C∞(V ), then we may find ϕ∗(f ) using

the previous formula and the lemma:

e.g. ∂ξαϕ
∗(f ) =

∑
b
∂ϕ∗(yb)
∂ξα ϕ∗

(
∂f
∂yb

)
=
∑

b
∂ϕ∗(y i )
∂ξα ϕ∗

(
∂f
∂y i

)
.

In general, if f =
∑

fβ1,...,βpθ
β1 · · · θβp ∈ C∞(V), then

ϕ∗(f ) =
∑
ϕ∗(fβ1,...,βp)ϕ∗(θβ1) · · ·ϕ∗(θβp).
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This gives the so-called symbolic way of calculation: if U and V

are superdomains with coordinates (x , ξ) = (x i , ξα) and

(y , θ) = (yk , θβ), a morphism ϕ : U → V can be written

symbolically

ϕ : (x , ξ) 7→ (y , θ), y = y(x , ξ), θ = θ(x , ξ),

where in fact yk = ϕ∗(yk) = yk(x i , ξα), θβ = ϕ∗(θβ) = θβ(x i , ξα).
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We may write ϕ∗(f )(x i , ξα) = f (y j(x i , ξα), θ(x i , ξα)) and find this

function using the above proof.

Example. Let U = V = R1|2 with the coordinates x , ξ1, ξ2 and ϕ

is given by

ϕ∗(x) = x + ξ1ξ2, ϕ∗(ξ1) = ξ1, ϕ∗(ξ2) = ξ2.

Let f = f (x), then

f (x + ξ1ξ2) = (ϕ∗f )(x , ξ1, ξ2),

(ϕ∗f )(x , ξ1, ξ2) = (ϕ∗f )∼(x) + (ϕ∗f )12(x)ξ1ξ2,

(ϕ∗f )∼(x) = f (x),
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(ϕ∗f )12 = (∂ξ2∂ξ1ϕ∗(f ))∼ = (∂ξ2(∂ξ1(ϕ∗(x))ϕ∗(∂x f )))∼ =

(∂ξ2(ξ2ϕ∗(∂x f )))∼ = (ϕ∗(∂x f ))∼ − (ξ2∂ξ2ϕ∗(∂x f ))∼ = ∂x f .

Thus, f (x + ξ1ξ2) = f (x) + ∂x f (x)ξ1ξ2
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We see that if f ∈ C∞(V r |s), then we may consider the expression

f (g1, ..., gr , h1, ..., hs),

where g1, ..., gr and h1, ..., hr are respectively even and odd

functions on some U .
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Let x1, ..., xn, ξ1, ..., ξm be coordinates on U . If ϕ : U → V is a

diffeomorphism and y 1, ..., yn, η1, ..., ηm are coordinates on V as

above,

then the functions ϕ∗(y 1), ..., ϕ∗(yn), ϕ∗(η1), ..., ϕ∗(ηm) are also

called coordinates on U .

In that case ϕ∗(y 1), ..., ϕ∗(yn) are not necessary coordinates on U.

By the above considerations, the expression

f (y j , θβ) = f (x i (y j , θβ), ξα(y j , θβ)) makes sense.
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Examples of morphisms.

1. ϕ : Rn → Rk|m:

since (θβ)2 = 0, (ϕ∗(θβ))2 = 0,

but ϕ∗(θβ) ∈ C∞(Rn) =⇒ ϕ∗(θβ) = 0,

thus ϕ is given by ϕ̃ : Rn → Rk .
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2. ϕ : R0|2 → Mn|0:

f ∈ C∞M =⇒ ϕ∗(f ) = a(f ) + b(f )ξ1ξ2, a(f ), b(f ) ∈ R.

ϕ∗(fg) = ϕ∗(f )ϕ∗(g) =⇒ a(fg) + b(fg)ξ1ξ2 =

a(f )b(f ) + (a(g)b(f ) + a(f )b(g))ξ1ξ2,

=⇒ a(fg) = a(f )a(g), b(fg) = a(g)b(f ) + a(f )b(g)

=⇒ a : C∞M → R is a homomorphism =⇒ ∃x ∈ M, a(f ) = f (x),

finally, b(fg) = b(g)f (x) + f (x)b(g), i.e. b ∈ TxM.

Thus, ϕ is defined by a point x ∈ m and a tangent vector

b ∈ TxM, ϕ∗(f ) = f (x) + b(f )ξ1ξ2.
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Example. Let E → U be a vector bundle over U,

U = (U, Γ(U,ΛE )).

If ξ1, ..., ξm are generators of Γ(U,ΛE ), then x1, ..., xn, ξ1, ..., ξm

are coordinates on U .

Any automorphism ϕ of the bundle ΛE → U preserving the parity

defines the automorphism of U :

ϕ∗(x i ) = ϕ0(x1, ..., xn),

ϕ∗(ξα) =
∑
r≥0

∑
α1<···<α2r+1

ϕαα1...α2r+1
(x1, ..., xn)ξα1 · · · ξα2r+1 .
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Any morphism of U has the coordinate form

ϕ∗(x i ) = ϕ0(x1, ..., xn)+
∑
r≥1

∑
α1<···<α2r

ϕαα1...α2r
(x1, ..., xn)ξα1 · · · ξα2r ,

ϕ∗(ξα) =
∑
r≥0

∑
α1<···<α2r+1

ϕαα1...α2r+1
(x1, ..., xn)ξα1 · · · ξα2r+1 .
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Let ϕ : U → V be a morphism and X ∈ TU . We get the map

X ◦ ϕ∗ : C∞(V)→ C∞(U).

Lemma.
(
∂
∂xa ◦ ϕ

∗) f =
∑

b
∂ϕ∗(yb)
∂xa ϕ∗

(
∂f
∂yb

)
, f ∈ C∞(V).

In the matrix form:∂(ϕ∗f )
∂x i

∂(ϕ∗f )
∂ξα

 =

∂(ϕ∗y j )
∂x i

∂(ϕ∗ηβ)
∂x i

∂(ϕ∗y j )
∂ξα

∂(ϕ∗ηβ)
∂ξα

 ·
ϕ∗ ∂f∂y j

ϕ∗ ∂f
∂ηβ

 .
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Define the Jacoby matrix of ϕ:

J(ϕ) =

∂(ϕ∗y j )
∂x i

∂(ϕ∗ηβ)
∂x i

∂(ϕ∗y j )
∂ξα

∂(ϕ∗ηβ)
∂ξα

st

=



∂(ϕ∗y1)
∂x1 · · · ∂(ϕ∗y1)

∂xn −∂(ϕ∗y1)
∂ξ1 · · · −∂(ϕ∗y1)

∂ξm

...
...

...
...

∂(ϕ∗y r )
∂x1 · · · ∂(ϕ∗y r )

∂xn −∂(ϕ∗y r )
∂ξ1 · · · −∂(ϕ∗y r )

∂ξm

∂(ϕ∗η1)
∂x1 · · · ∂(ϕ∗η1)

∂xn
∂(ϕ∗η1)
∂ξ1 · · · ∂(ϕ∗η1)

∂ξm

...
...

...
...

∂(ϕ∗ηs)
∂x1 · · · ∂(ϕ∗ηs)

∂xn
∂(ϕ∗ηs)
∂ξ1 · · · ∂(ϕ∗ηs)

∂ξm


.
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Lemma. If ϕ : U → V and ψ : V → W are morphisms, then

J(ψ ◦ ϕ) = ϕ∗(J(ψ)) · J(ϕ).
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Berezin integral.

Let x1, ..., xn, ξ1, ..., ξm be coordinates on U such that x1, ..., xn

are coordinates on U; let f ∈ C∞(U). to define
∫
U f assume the

following:∫
dξα = 0,

∫
ξαdξα = 1, ξαdξβ = −dξβ·ξα, ξαdx i = dx i ·ξα.

Using that, we get∫
U

dx1 · · · dxndξ1 · · · dξmf = (−1)
m(m−1)

2

∫
U

dx1 · · · dxnf1···m.

Note that∫
U

dx1 · · · dxndξ1 · · · dξmf =

∫
U

dx1 · · · dxn∂ξ1 · · · ∂ξm f .
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Theorem. Let ϕ : U → V be a diffeomorphism of superdomains.

Let f ∈ C∞(V) have a compact support. Then∫
V

f =

∫
U
ϕ∗f · Ber(J(ϕ)).
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Supermanifolds
Lie supergroups
Functor of points

Sheaves. Let M be a topological space. A sheaf F of algebras (vector

spaces, groups,...) on M is an assignment

U 7→ F(U)

to each open subset U ⊂ M of an algebra (vector space, group) F(U)

such that the following conditions are satisfied.

If V ⊂ U, then there exists a homomorphism map

ρU,V : F(U)→ F(V ), f 7→ ρU,V (f )

such that 1) ρU,U = id; 2) ρW ,V = ρU,V ◦ ρW ,U , V ⊂ U ⊂W

3) if (Ui ) is a covering of U, fi ∈ F(Ui ), ρUi ,Ui∩Uj (fi ) = ρUj ,Ui∩Uj (fj),

then there exists a unique f ∈ F(U) such that ρU,Ui f = fi .
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A morphism ϕ : F → T of two sheaves on M is a collection of

maps

ϕ(U) : F(U)→ T (U),

U ⊂ M is open such that

rU,V ◦ ϕ(U) = ϕ(V ) ◦ ρU,V , V ⊂ U.
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Example. M is a smooth manifold, and C∞M is the sheaf of

smooth functions on M: C∞M (U) are smooth functions on the

subset U ⊂ M.

Note that a smooth manifolds may be defined as a pair (M,C∞M ),

where M is a Hausdorf topological space, and C∞M is a sheaf of

commutative algebras on M locally isomorphic to the sheaf of

smooth functions on an open subset of Rn.
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Example. E → M is a vector bundle over a smooth manifold M,

U 7→ Γ(U,E ) is the sheaf of smooth sections of E .

Note that this sheaf allows to reconstruct E .
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Definition of a supermanifold:

A supermanifold of dimension n|m is a pair M = (M,OM), where

M is a Hausdorf topological space, and OM is a sheaf of

commutative superalgebras on M locally isomorphic to the sheaf of

superfunctions on an open subset of Rn|m.

Anton Galaev Intoduction to Supergeometry



Linear superalgebra
Superdomains

Supermanifolds
Supersymmetries

Supermanifolds
Lie supergroups
Functor of points

A morphism of two supermanifolds ϕ :M→N is a pair

ϕ = (ϕ̃, ϕ∗), where ϕ̃ : M → N is a continuous map and a

morphism of sheaves

ϕ∗ : ON → ϕ∗OM,

here ϕ∗OM is the induced sheaf on N:

ϕ∗OM(U) = OM(ϕ−1(U)), U ⊂ N.
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Consider M and define the sheaf C∞M :

C∞M (U) = OM(U)/(OM(U)1̄).

Then C∞M defines the structure of a smooth manifold on M.
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The inclusion

i = (̃i , i∗) : M →M, ĩ(x) = x , i∗(f ) = f̃ ,

where

f ∈ OM(U) 7→ f̃ ∈ C∞M (U) = OM(U)/(OM(U)1̄).

If there exists a splitting OM(U) = C∞M (U)⊕ (OM(U)1̄), then

there is an inclusion C∞M (U) ⊂ OM(U), and one considers the

projection

p = (p̃, p∗) :M→ M, p̃(x) = x , p∗(f ) = f ,

.
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Example. Let E → M be a vector bundle over M, define

OM(U) = Γ(U,ΛE ), U ⊂ M.
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Definition of a supermanifold using local charts

A coordinate chart on a topological space M is a pair (U , c), where

U ⊂ Rn|m is a superdomain, and c : U → M is a homeomorphism

on c(U).

Two charts (U1, c1) and (U2, c2) are compatible, if there exists a

diffeomorphism

γ12 : (U12,C
∞U1|U12)→ (U21,C

∞U2|U21), γ̃12 = c−1
2 ◦ c1|U12

U12 = c−1
1 (c1(U1) ∩ c2(U2)), U21 = c−1

2 (c1(U1) ∩ c2(U2))
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An atlas on a topological space M is a set of compatible charts

((Uα, cα), γαβ) such that ∪αcα(Uα) = M, γβα = γ−1
αβ ,

γαβγβδγδα = id.

A supermanifold M is a pair: a topological space M and an atlas

((Uα, cα), γαβ).
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Product of supermanifolds

If U and V are superdomains with the coordinates

x1, ..., xn, ξ1, ...ξm, y 1, ..., y r , θ1, ..., θs , then U × V is a

superdomain with the base U × V and coordinates

x1, ..., xm, y 1, ..., y r , ξ1, ..., ξm, θ1, ..., θs .

If M = (M, (Uα, cα), γαβ) and N = (N, (Vµ, cµ), γµν) are

supermanifolds, then the product M×N is defined by

(M × N, (Uα × Vµ, cα × cµ), γαβ × γµν).
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Theorem of Batchelor (1979).

Let M = (M,OM) be a supermanifold. Then there exists a vector

bundle E → M such that M' (M, Γ(·,ΛE )).

Moreover, there is the following one-to-one correspondence:


Supermanifolds

of dim. n|m mod.

isomorphisms of supermf.

←→


vector bundles of rank m

over n-dim. smooth

manifolds mod.

isom. of vector bundles.


Morphisms of supermanifolds are in general not induced by

morphisms of vector bundles!
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The tangent sheaf: TM = (TM)0̄ ⊕ (TM)1̄,

(TM)̄i (U) =X : OM(U)→ OM(U)

∣∣∣∣∣∣ |X | = ī , X is R-linear

X (fg) = X (f )g + (−1)|f ||X |fX (g)


The vector fields ∂i = ∂x i , ∂α = ∂ξα form a local basis of TM(U)

⇒ TM is a locally free sheaf of supermodules over OM
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x ∈ M, the tangent space:

TxM = {X : OM,x → R|X (fg) = X (f )g(x)+(−1)|f ||X |f (x)X (g)}.

The vectors (∂x1)x , ..., (∂ξm)x span TxM ((∂xa)x f = (∂xa f )(x)).

Note: (TxM)0̄ = TxM.
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A Lie supergroup is a supermanifold G = (G ,OG) together with

three morphisms µ : G × G → G, i : G → G, e : R0|0 → G

G × G

G × G × G
id
×µ-

G

µ
-

G × G

µ -
µ×

id
-

G × G

G × R0|0 = G
id

-

(id , e
) -

G

µ
-

G × G

µ -
(e, id) -

G × G

G -
i ×

id-

e -G

µ
-

G × G

µ -
id×i

-
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Action of a Lie supergroup G on a supermanifold M: is a

morphism

a : G ×M→M

such that

G ×M

G × G ×M

idG
×a -

G

a

-

G ×M

a
-

µ×
idM -
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The Lie superalgebra of a Lie supergroup.

A vectorfield X ∈ TG(G ) is called left-invariant if

(1⊗ X ) ◦ µ∗ = µ∗ ◦ X : OG(G )→ OG×G(G × G ).

The Lie superalgebra g of the Lie supergroup G is the Lie

superalgebra of left-invariant vector fields on G.
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Proposition. The vector superspace g can be identified with the

tangent space TeG.

The isomorphism is given by

Xe ∈ TeG 7→ X = (1⊗ Xe) ◦ µ∗ ∈ g.

Note: g0̄ is the Lie algebra of G .
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Super Harish-Chandra pairs.

The Lie supergroup G defines canonically the pair (G , g),

g0̄ = Lie(G );

there exists Ad : G → gl(g),

Ad|G×g0̄
= AdG , dAd|g0̄×g1̄

= [·, ·]g0̄×g1̄
.

Conversely, any such pair (G , g) defines a Lie supergroup G.
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Example. An action a : G ×M→M can be given by an action

of G on M and by a morphism

g→ (TM(M))0

such that the differential of the action of G coincides with the

representation of g0̄.
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Example. A representation of G on a vector superspace V consists

of a representation of G on V and of a morphism

g→ gl(V )

such that the differential of the representation of G coincides with

the representation of g0̄.
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Example.

GL(n|m,R) = (GL(n,R)×GL(m,R), gl(n|m,R)),

OSp(n|2m,R) = (O(n)× Sp(2m,R), osp(n|2m,R)).
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Functor of points.

Let M be a fixed supermanifold, and S is another supermanifold.

An S-point of M is a morphism S →M.

The set of S-points of M:

M(S) = Hom(S,M).

Any morphism ψ : S1 → S2 defines the morphism

M(ψ) :M(S2)→M(S1), ϕ 7→ ψ ◦ ϕ.

The map S 7→M(S) is a contravariant functor from the category

of supermanifolds to the category of sets.
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A morphism of supermanifolds ϕ :M→N induces the map

ϕS :M(S)→ N (S), ψ 7→ ϕ ◦ ψ.

Yoneda’s Lemma. For given maps {fS :M(S)→ N (S)}S that

are functorial in S, there exists a unique morphism ϕ :M→N

such that ϕS = fS .

α : T → S

M(S)
fS- N (S)

M(T )

M(α)

? fT- N (T )
?

N (α)
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Proof. Definition of ϕ :M→N :

ϕ = fM(idM), where fM :M(M)→ N (M)

Proof of the equality fS = ϕS :M(S)→ N (S): Let α ∈M(S),

i.e. α : S →M,

M(M)
fM- N (M)

M(S)

M(α)

? fS- N (S)
?

N (α)

ϕS(α) = ϕ ◦ α = fM(idM) ◦ α = N (α)(fM(idM)) =

fS ◦M(α)(idM) = fS ◦ α = fS(α)
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Proposition. If M and N are supermanifolds, then

Hom(M,N ) = Hom(ON (N),OM(M)).
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Example. The supermanifold M = R0|1. Any S-point

ϕ : S → R0|1 is defined by the morphism

ϕ∗ : C∞(R0|1) = Rξ → OS(S),

which is given by the odd superfunction ϕ∗(ξ) of OS(S)1̄. This

superfunction describes elements of R0|1(S), i.e. it plays the role

of usual coordinate on this space, we denote it simply by ξ.

If α : T → S is a morphism than

M(α) :M(S) = OS(S)1̄ →M(T ) = OT (T )1̄, M(α)(ϕ) = ϕ◦α = α∗,

i.e. the map M(α) is given by ξ → α∗(ξ).

Thus, R0|1(S) = OS(S)1̄, M(α) = α∗.
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Example. The supermanifold Rn|m. Any S-point ϕ : S → Rn|m is

defined by the morphism

ϕ∗ : C∞(Rn|m) = C∞(Rn)⊗R Λ(m)→ OS(S),

which is given by n even and m odd elements of OS(S),

ϕ∗(x1), ..., ϕ∗(xn), ϕ∗(ξ1), ..., ϕ∗(ξm), hence,

Rn|m(S) = OS(S)n0̄ ⊕OS(S)m1̄ = (OS(S)⊗ Rn|m)0̄.

Let us denote the above functions again by

x1, ..., xn, ξ1, ..., ξm.

These coordinates describe the elements of Rn|m(S).
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If α : T → S is a morphism then

M(α) :M(S)→M(T ), M(α)ϕ = ϕ ◦ α,

and M(α) is defined by α∗(ϕ∗x1), ..., α∗(ϕ∗ξm), i.e. M(α) = α∗.

Anton Galaev Intoduction to Supergeometry



Linear superalgebra
Superdomains

Supermanifolds
Supersymmetries

Supermanifolds
Lie supergroups
Functor of points

Any morphism ϕ : Rn|m → Rr |s is defined by the morphisms

ϕS : Rn|m(S)→ Rr |s(S) that can be described in coordinates:

ϕS(x1, ..., ξm) = (y 1, ..., θs).

This gives an explanation to the symbolic way of calculation: if

M and N are supermanifolds with local coordinates

(x , ξ) = (x i , ξα) and (y , θ) = (yk , θβ), a morphism ϕ :M→N

can be written symbolically

ϕ : (x , ξ) 7→ (y , θ), y = y(x , ξ), θ = θ(x , ξ),

where in fact yk = ϕ∗(yk) = yk(x i , ξα), θβ = ϕ∗(θβ) = θβ(x i , ξα).
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Example. (The supertranslation group of dimension 1|1)

Consider the supermanifold R1|1 and define the structure of the Lie

supergroup on it

µ : R1|1×R1|1 → R1|1, µ∗(x) = x ′+ x ′′+ξ′ξ′′, µ∗(ξ) = ξ′+ξ′′.

If we consider (x , ξ) as abstract coordinates on the set of

(S-points) of R1|1, then the multiplication is given by

(
(x ′, ξ′), (x ′′, ξ′′)

)
7→ (x ′ + x ′′ + ξ′ξ′′, ξ′ + ξ′′)
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Exercise. The Lie superalgebra of R1|1 is spanned by the vector

fields ∂x and D = −ξ∂x + ∂ξ;

[D,D] = 2D2 = −2∂t .
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A Lie supergroup can be defined in terms of its S-points:

A supermanifold G is a Lie supergroup iff

for every supermanifold S, G(S) is a group, and for any morphism

α : T → S of supermanifolds, G(α) : G(S)→ G(T ) is a group

homomorphism.

The action of G on M can be described as the action of the group

G(S) on the set M(S),

aS : G(S)×M(S)→M(S).
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Example.

Recall that Mat(n|m,R) =

A B

C D

 ,

Mat(n|m,R)0̄ =

A 0

0 D

 , Mat(n|m,R)1̄ =

0 B

C 0

 .

We may identify this space with Rn2+m2|2nm.

We have the following coordinates: xij , yαβ, θiα, θ̄αi ,

xij

A B

C D

 = Aij , θiα

A B

C D

 = Biα, ...

These coordinates is a basis of Mat(n|m,R)∗.
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As the supermanifold,

Mat(n|m,R) = (Mat(n,R)×Mat(m,R),C∞(Mat(n|m,R))).

Define the map

µ = (µ̃, µ∗) : Mat(n|m,R)×Mat(n|m,R)→ Mat(n|m,R),

µ̃ is the multiplication of matrices, µ∗ = mult∗, where

mult : Mat(n|m,R)⊗Mat(n|m,R)→ Mat(n|m,R) is the

multiplication.
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The subset GL(n,R)×GL(m,R) ⊂ Mat(n,R)×Mat(m,R) is

open.

Consider the superdomain

GL(n|m,R)

= (GL(n,R)×GL(m,R),C∞(Mat(n|m,R))|GL(n,R)×GL(m,R)).

Together with the multiplication µ it is a Lie supergroup.
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Recall that Rn|m(S) = (OS(S)⊗ Rn|m)0̄. Hence,

Mat(n|m,R)(S) = (OS(S)⊗Mat(n|m,R))0̄ = Mat(n|m,OS(S))0̄.

The set Mat(n|m,OS(S))0̄ can be viewed as the set of

endomorphisms of the OS(S)0̄-module

Rn|m(S) = (OS(S)⊗ Rn|m)0̄.

The subset of automorphisms is the subgroup GL(n|m,OS(S)).

The Lie supergroup GL(n|m,R) can be described in terms of the

functor of point: S 7→ GL(n|m,R)(S) = GL(n|m,OS(S)).

The multiplication µS is the multiplication of matrices.
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The Poincaré supergroup.

Recall that the Poincaré group

P = O(1, 3) i R1,3

is the group of isometries of the Minkowski space R1,3; it is the full

symmetry of special Relativity.

In quantum field theory, unitary representations of P classify free

elementary particles.

Sometimes P is defined as P = Spin(1, 3) i R1,3.

More generally, P = Spin(V ) i V , V = R1,n−1 or V = Rp,q.
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The Poincaré algebra p = so(V ) n V , V = R1,n−1,

[A,B] = [A,B]so(V ), [A,X ] = AX , [X ,Y ] = 0, A,B ∈ so(V ), X ,Y ∈ V .

N-extended Poincaré superalgebra is a Lie superalgebra

g = g0̄ ⊕ g1̄, g0̄ = p,

g1̄ is the direct sum of N spinor modules of so(V ),

[V , g1̄] = 0, [·, ·]|so(V )×g1̄
is given by the spinor representation,

[g1̄, g1̄] ⊂ V .

N-extended Poincaré supergroup is the Lie supergroup given by

the Harish-Chandra pair (P, g).
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In supersymmetric quantum theory, irreducible unitary

representations of the Poincaré superalgebra classify elementary

superparticles. The restriction of the representation to the

underlying Poincaré algebra gives several irreducible representations

of it, i.e. a collection of ordinary particles, called multiplet. The

members of the multiplet are called superpartners of each-other.
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Classification of N-extended Poincaré superalgebras:

D.V. Alekseevsky, V. Cortés 1997.

Example. N = 1

g = g0̄ ⊕ g1̄, g0̄ = p, g1̄ = S ,

it is enough to describe all so(V )-equivariant maps

[·, ·]|S⊗S : Sym2S → V ,

the dimension of the space of such maps is the multiplicity of V in

the so(V )-module Sym2V .

Let n = 4, g = p⊕ g1̄, p = so(1, 3) nR1,3.

so(1, 3) ' sl(2,C), g1̄ = S = C2,

[·, ·]|C2⊗C2 : Sym2C2 → R1,3 is defined up to a constant.
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Minkowski superspace M is the super Lie group given by super

Harish-Chandra pair (V ,V ⊕ S), where V is the Minkowski space

(considered as the abilian Lie group), V ⊕ S ⊂ g is the subalgebra,

in particular, [V ,V ] = [V ,S ] = 0, [S ,S ] = 0.

The Poincaré supergroup P is the group of supersymmetries of M.

The field equations on M should be invariant w.r.t. the

action of P.
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M = R4|4 with the coordinates x1, ..., x4, ξ1, ..., ξ4

g = p⊕ S , p = so(1, 3) nR1,3, S = R4 (Majorana spinors)

P0, ...,P3 ∈ R1,3, Q1, ...,Q4 ∈ S , [Qα,Qβ] = Γi
αβPi

The representation of the supersymmetry:

Di = ∂i ,

Dij = x i∂j − x j∂i +
1

2
(γij)

α
βξ

β∂α,

Dα =
1

2
Γi
αβξ

β∂i + ∂α.
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Super conformal algebra of Wess and Zumino (1974).

This is the first known example of a simple Lie algebra.

g0̄ = so(4, 2)⊕ u(1) ' su(2, 2)⊕ u(1), g1̄ = C2,2,

g = su(2, 2|1) = osp(4, 4|2) ∩ sl(4|2,C)

Note that SO0(4, 2) is the connected group of isometries of AdS5.

The corresponding homogenious superspace is AdS5|8.

Anton Galaev Intoduction to Supergeometry


	Linear superalgebra
	Lie superalgebras
	Lie superalgebras of vector fields on R0|m
	About quantum particles and supersymmetry
	Modules over supercommutative superalgebras

	Superdomains
	Supermanifolds
	Supermanifolds
	Lie supergroups
	Functor of points

	Supersymmetries

