Linear superalgebra Superdomains Supermanifolds Supersymmetries

Intoduction to Supergeometry

Anton Galaev

Masaryk University (Brno, Czech Republic)

イロン イヨン イヨン イヨン

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Vector superspace

$$V = V_{\overline{0}} \oplus V_{\overline{1}}, \qquad \mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$$

Homogeneous elements: $x \in V_{\overline{0}} \cup V_{\overline{1}}$

$$x \in V_{ar{0}}$$
 is called even, $|x| = ar{0}$;

 $x \in V_{\overline{1}} \setminus \{0\}$ is called odd, $|x| = \overline{1};$

The vectors $e_1, ..., e_{n+m}$ form a basis of V if $e_1, ..., e_n$ is a basis of $V_{\overline{0}}$ and $e_{n+1}, ..., e_{n+m}$ is a basis of $V_{\overline{1}}$ dim $V = \dim V_{\overline{0}} | \dim V_{\overline{1}} = n | m$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

V and *W* are vector superspaces \Rightarrow *V* \otimes *W* is a vector superspace:

$$(V\otimes W)_{ar{0}}=(V_{ar{0}}\otimes W_{ar{0}})\oplus (V_{ar{1}}\otimes W_{ar{1}})$$

$$(V \otimes W)_{\overline{1}} = (V_{\overline{0}} \otimes W_{\overline{1}}) \oplus (V_{\overline{1}} \otimes W_{\overline{0}})$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

V and W are vector superspaces \Rightarrow Hom(V, W) is a vector superspace:

$$\begin{aligned} \operatorname{Hom}(V,W)_{\bar{0}} &= \operatorname{Hom}(V_{\bar{0}},W_{\bar{0}}) \oplus \operatorname{Hom}(V_{\bar{1}},W_{\bar{1}}) \\ &= \{f \in \operatorname{Hom}(V,W) | \quad |f(x)| = |x|\} \quad (\text{morphisms}) \\ \operatorname{Hom}(V,W)_{\bar{1}} &= \operatorname{Hom}(V_{\bar{0}},W_{\bar{1}}) \oplus \operatorname{Hom}(V_{\bar{1}},W_{\bar{0}}) \\ &= \{f \in \operatorname{Hom}(V,W) | \quad |f(x)| = |x| + \bar{1}, \ x \neq 0\} \end{aligned}$$

・ロト ・四ト ・ヨト ・ヨトー

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

For $V = V_{\overline{0}} \oplus V_{\overline{1}}$ consider the superspace

$$\Pi V = (\Pi V)_{\bar{0}} \oplus (\Pi V)_{\bar{1}} = V_{\bar{1}} \oplus V_{\bar{0}}$$

 $\Pi(\Pi V) = V$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

A vector supersubspace $W \subset V$ is a vector subspace that is a vector superspace such that

 $W = W_{\overline{0}} \oplus W_{\overline{1}}$

and

$$W_{\overline{0}} \subset V_{\overline{0}}, \quad W_{\overline{1}} \subset V_{\overline{1}}.$$

▲圖▶ ▲屋▶ ▲屋▶

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Superalgebra

$$A = A_{\bar{0}} \oplus A_{\bar{1}}$$
$$\cdot : A \otimes A \to A$$
$$\cdot \in \operatorname{Hom}_{\bar{0}}(A \otimes A, A), \quad \text{i.e. } |x \cdot y| = |x| + |y|.$$

In other words,

$$A_{\overline{0}} \cdot A_{\overline{0}}, A_{\overline{1}} \cdot A_{\overline{1}} \subset A_{\overline{0}}, \qquad A_{\overline{0}} \cdot A_{\overline{1}}, A_{\overline{1}} \cdot A_{\overline{0}} \subset A_{\overline{1}}.$$

(ロ) (四) (E) (E) (E)

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

A superalgebra A is called *commutative* if

$$xy = (-1)^{|x||y|} yx,$$

 $x, y \in V_{\overline{0}} \cup V_{\overline{1}}.$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Sign rule:

If in a formula something of a parity p moves through something of a parity q, then the sign $(-1)^{pq}$ appears.

Example. Commutative algebra: xy = yx;

commutative superalgebra: $xy = (-1)^{|x||y|} yx$.

<ロ> (四) (四) (三) (三) (三)

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Important example. The Grassmann superalgebra $\Lambda(m)$:

Consider the algebra $\Lambda(m)$ with the generators $1, \xi_1, ..., \xi_m$ and the relations

$$\xi_{\alpha}\xi_{\beta}+\xi_{\beta}\xi_{\alpha}=0$$

In particular, $\xi_{lpha}^2=0.$ Any $f\in \Lambda(m)$ has the form

$$f = f_0 + \sum_{r=1}^m \sum_{1 \le \alpha_1 < \cdots < \alpha_r \le m} f_{\alpha_1 \cdots \alpha_r} \xi_{\alpha_1} \cdots \xi_{\alpha_r}, \quad f_0, f_{\alpha_1 \cdots \alpha_r} \in \mathbb{R}.$$

Let $|1| = \overline{0}$, $|\xi_{\alpha}| = \overline{1}$ and assume |xy| = |x| + |y|. Then $\Lambda(m)$ becomes a commutative superalgebra.

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

We may start with the vector space \mathbb{R}^m with a basis $\xi_1, ..., \xi_m$, than the exterior algebra

$$\Lambda(m) = \oplus_{i=0}^m \Lambda^i \mathbb{R}^m$$

together with the $\mathbb{Z}_2\text{-}\mathsf{grading}$

$$\Lambda(m) = \Lambda^{even} \oplus \Lambda^{odd}$$

is the Grassmann superalgebra.

< 注 → < 注 →

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Lie superalgebra:

$$\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus\mathfrak{g}_{\bar{1}},$$

$$[\cdot, \cdot] : \mathfrak{g} \otimes \mathfrak{g} \to \mathfrak{g}, \quad |[x, y]| = |x| + |y|$$

1)
$$[x, y] = -(-1)^{|x||y|}[y, x]$$

2) $[[x, y], z] + (-1)^{|x|(|y|+|z|)}[[y, z], x] + (-1)^{|z|(|x|+|y|)}[[z, x], y] = 0$

 $\Rightarrow \mathfrak{g}_{\bar{0}}$ is a Lie algebra and $\mathfrak{g}_{\bar{1}}$ is a $\mathfrak{g}_{\bar{0}}\text{-module}$

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

More about the sign rule:

Consider auxiliary anticommuting odd parameters $\eta_1, ..., \eta_N$.

If x_1 , x_2 ... are odd elements, replace them by $\eta_1 x_1$, $\eta_2 x_2$..., and do all computations as usually with even elements. No need to remember the sign rule! Note that then we work not over \mathbb{R} , but over $\Lambda(N)$.

回 と く ヨ と く ヨ と

2

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Example: get the definition of a commutative superalgebra:

$$x, y \in A_{\overline{0}}, u, v \in A_{\overline{1}}.$$
 Consider $x, y, \eta_1 u, \eta_2 v.$

$$x(\eta_1 u) = (\eta_1 u) x \Rightarrow \eta_1 x u = \eta_1 u x \Rightarrow x u = u x$$

$$(\eta_1 u)(\eta_2 v) = (\eta_2 v)(\eta_1 u) \Rightarrow \eta_1 \eta_2 uv = \eta_2 \eta_1 v u$$

$$\Rightarrow \eta_1 \eta_2 uv = -\eta_1 \eta_2 vu \Rightarrow uv = -vu$$

Recall that
$$zw = (-1)^{|z||w|}wz, \quad z,w \in A.$$

Similarly for a Lie superalgebra \mathfrak{g} , let $u, v \in \mathfrak{g}_{\overline{1}}$, then

$$\begin{aligned} &[\eta_1 u, \eta_2 v] = -[\eta_2 v, \eta_1 u] \Rightarrow \eta_1 \eta_2 [u, v] = -\eta_2 \eta_1 [v, u] \\ &\Rightarrow \eta_1 \eta_2 [u, v] = \eta_1 \eta_2 [v, u] \Rightarrow [u, v] = [v, u]. \end{aligned}$$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Example.
$$\mathbb{K} = \mathbb{R} \text{ or } \mathbb{C}, \qquad \mathbb{K}^{n|m} = \mathbb{K}^n \oplus \Pi(\mathbb{K}^m)$$

 $\mathfrak{gl}(n|m,\mathbb{K}) = \left\{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \right\}$
 $\mathfrak{gl}(n|m,\mathbb{K})_{\bar{0}} = \left\{ \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \right\} \simeq \mathfrak{gl}(n,\mathbb{K}) \oplus \mathfrak{gl}(m,\mathbb{K})$
 $\mathfrak{gl}(n|m)_{\bar{1}} = \left\{ \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix} \right\} \simeq (\mathbb{K}^n \otimes (\mathbb{K}^m)^*) \oplus ((\mathbb{K}^n)^* \otimes \mathbb{K}^m)$
 $[X, Y] = XY - (-1)^{|X||Y|} YX$

・ロト・(四ト・(川下・(日下・(日下)

 Linear superalgebra
 Lie superalgebras

 Superdomains
 Lie superalgebras of vector fields on $\mathbb{R}^{0|m}$

 Supermanifolds
 About quantum particles and supersymmetry

 Supersymmetries
 Modules over supercommutative superalgebras

Example. Let
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathfrak{gl}(n|m,\mathbb{R}).$$

Define the supertrace $\operatorname{str} M = \operatorname{tr} A - \operatorname{tr} D$.

$$\mathfrak{sl}(n|m,\mathbb{R}) = \{M \in \mathfrak{gl}(n|m,\mathbb{R}) | \operatorname{str} M = 0\}.$$

If $m \neq n$, then $\mathfrak{sl}(n|m,\mathbb{R})$ is simple.

For m = n the Lie superalgebra $\mathfrak{psl}(n|n,\mathbb{R}) = \mathfrak{sl}(n|n,\mathbb{R})/\mathbb{R}E_{2n}$ is simple (but it is not a supersubalgebra of $\mathfrak{gl}(n|m,\mathbb{R})$).

・ロン ・回と ・ヨン・

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Example from differential geometry. Let M be a smooth manifold, X a fixed vector field on M and $\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M)$ the space of differential forms on M. The \mathbb{R} -linear operators

$$d, L_X, i_X : \Omega^*(M) \to \Omega^*(M)$$

satisfy

$$L_X = i_X \circ d + d \circ i_X, \quad L_X \circ i_X = i_X \circ L_X, \quad L_X \circ d = d \circ L_X.$$

Let $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$, $\mathfrak{g}_{\overline{0}} = \mathbb{R}L_X$, $\mathfrak{g}_{\overline{1}} = \mathbb{R}d \oplus \mathbb{R}i_X$.

Then \mathfrak{g} is a Lie superalgebra with the only non-zero Lie superbracket

$$\begin{bmatrix} d, i_X \end{bmatrix} = L_X. \qquad (\Box \vdash \langle \Box \vdash \langle \Box \vdash \langle \Box \vdash \langle \Box \vdash \rangle \rangle \in \mathbb{R})$$
Anton Galaev
Intoduction to Supergeometry

Bilinear forms on a vector superspace.

Let $g: V \otimes V \to \mathbb{R}$ be a bilinear form on the superspace V.

- g is symmetric if $g(y,x) = (-1)^{|x||y|}g(x,y)$;
- g is skew-symmetric if $g(y, x) = -(-1)^{|x||y|}g(x, y)$;
- g is even if $g(V_{\overline{0}}, V_{\overline{1}}) = g(V_{\overline{1}}, V_{\overline{0}}) = 0;$
- g is odd if $g(V_{\overline{0}}, V_{\overline{0}}) = g(V_{\overline{1}}, V_{\overline{1}}) = 0.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let g be an even non-degenerate symmetric on

$$\mathbb{R}^{n|m} = \mathbb{R}^n \oplus \Pi(\mathbb{R}^m),$$

i.e.
$$g(\mathbb{R}^{n}, \Pi(\mathbb{R}^{2k})) = g(\Pi(\mathbb{R}^{2k}), \mathbb{R}^{n}) = 0$$
,

the restriction of g to \mathbb{R}^n is non-degenerate and symmetric (with some signature (p,q), p+q=n),

the restriction of g to $\Pi(\mathbb{R}^m)$ is non-degenerate and skew-symmetric, i.e. m = 2k.

The orthosymplectic Lie superalgebra

 $\mathfrak{osp}(p,q|2k)_{\overline{i}} = \{\xi \in \mathfrak{gl}(n|2k,\mathbb{R})_{\overline{i}} | g(\xi x,y) + (-1)^{|x|\overline{i}}g(x,\xi y) = 0\}.$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let e.g. the restriction of g to \mathbb{R}^n be positive definite

$$g=\left(egin{array}{ccc} 1_n & 0 & 0 \ 0 & 0 & 1_k \ 0 & -1_k & 0 \end{array}
ight).$$

Then,

$$\mathfrak{osp}(n|2k,\mathbb{R}) = \left\{ \begin{pmatrix} A & B_1 & B_2 \\ B_2^t & C_1 & C_2 \\ -B_1^t & C_3 & -C_1^t \end{pmatrix} \middle| A^t = -A, C_2^t = C_2, C_3^t = C_3 \right\}$$

 $\mathfrak{osp}(p,q|2k) = (\mathfrak{so}(p,q) \oplus \mathfrak{sp}(2k,\mathbb{R})) \oplus \mathbb{R}^{p,q} \otimes \mathbb{R}^{2k}$

Consider an odd non-degenerate supersymmetric form g on $\mathbb{R}^{n|n} = \mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$, i.e. $g(\mathbb{R}^n, \mathbb{R}^n) = g(\Pi(\mathbb{R}^n), \Pi(\mathbb{R}^n)) = 0$, and $g(x_0, x_1) = g(x_1, x_0)$ for all $x_0 \in \mathbb{R}^n$, $x_1 \in \Pi(\mathbb{R}^n)$. There exists a basis of $\mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$ such that $g = \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix}$.

The periplectic Lie superalgebra:

$$\mathfrak{pe}(n,\mathbb{R}) = \left\{ \left(\begin{array}{cc} A & B \\ C & -A^t \end{array} \right) \middle| B = -B^t, C = C^t \right\}$$

 $\mathfrak{pe}(n,\mathbb{R})=\mathfrak{gl}(n,\mathbb{R})\oplus(S^2\mathbb{R}^n\oplus\Lambda^2(\mathbb{R}^n)^*)$

 $\mathfrak{spe}(n,\mathbb{R})=\mathfrak{pe}(n,\mathbb{R})\cap\mathfrak{sl}(n|n,\mathbb{R})$ is simple.

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Consider an odd non-degenerate skew-symmetric form g on $\mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$. There exists a basis of $\mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$ such that

$$g = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}.$$
$$\mathfrak{pe}^{sk}(n, \mathbb{R}) = \left\{ \begin{pmatrix} A & B \\ C & -A^t \end{pmatrix} \middle| B = B^t, C = -C^t \right\}.$$

$$\mathfrak{pe}^{sk}(n,\mathbb{R})\simeq\mathfrak{pe}(n,\mathbb{R}).$$

・ 同 ト ・ 臣 ト ・ 臣 ト

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let J be an odd complex structure on $\mathbb{R}^{n|n} = \mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$, i.e. J is an odd isomorphism of $\mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$ with $J^2 = -$ id.

The queer Lie superalgebra $q(n, \mathbb{R})$ is the subalgebra of $\mathfrak{gl}(n|n, \mathbb{R})$ commuting with J.

There exists a basis of $\mathbb{R}^n \oplus \Pi(\mathbb{R}^n)$ such that $J = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}$. Then.

$$\mathfrak{q}(n,\mathbb{R}) = \left\{ \left(egin{array}{cc} A & B \\ B & A \end{array}
ight) \right\}, \quad \mathfrak{sq}(n,\mathbb{R}) = \left\{ \left(egin{array}{cc} A & B \\ B & A \end{array}
ight) \middle| \mathrm{trB} = 0
ight\}$$

 $\mathfrak{psq}(n,\mathbb{R}) = \mathfrak{sq}(n,\mathbb{R})/\mathbb{R}E_{2n}$ is simple.

소리가 소문가 소문가 소문가

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Examples of exceptional simple Lie superalgebras:

$$\mathfrak{g}=G(3), \quad \mathfrak{g}_{ar{0}}=G(2)\oplus\mathfrak{sl}(2,\mathbb{C}), \quad \mathfrak{g}_{ar{1}}=\mathbb{C}^7\otimes\mathbb{C}^2;$$

$$\mathfrak{g}=F(4), \quad \mathfrak{g}_{ar{0}}=\mathfrak{spin}(7)\oplus\mathfrak{sl}(2,\mathbb{C}), \quad \mathfrak{g}_{ar{1}}=\mathbb{C}^8\otimes\mathbb{C}^2.$$

・ロン ・回と ・ヨと ・

Э

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let V be a purely odd vector space, i.e. $V = V_{\overline{1}}$. By definition,

$$S^2V^* = \{b: V \otimes V \to \mathbb{R} \mid b(x,y) = (-1)^{|x||y|} b(y,x)\},\$$

but $|x| = |y| = \overline{1}$, if $x, y \neq 0$. This shows that b(x, y) = -b(y, x),

$$S^2 V^* = \Lambda^2 \Pi V^*, \qquad S^2 V = \Lambda^2 \Pi V.$$

Similarly,

$$\Lambda^2 V = S^2 \Pi V.$$

- (日) (三) (三) (三) (三)

 Linear superalgebra
 Lie superalgebras

 Superdomains
 Lie superalgebras of vector fields on $\mathbb{R}^{0|m}$

 Supermanifolds
 About quantum particles and supersymmetry

 Supersymmetries
 Modules over supercommutative superalgebras

The odd vector superspace $\mathbb{R}^{0|m}$ as the first example of a supermanifold 0 Consider \mathbb{R}^n . This is both a vector space and a smooth manifolds. The algebra of smooth functions on \mathbb{R}^n contains the dense subset of polynomial functions:

$$S^*(\mathbb{R}^n)^* = \oplus_{k=0}^{\infty} S^k(\mathbb{R}^n)^* \subset C^{\infty}(\mathbb{R}^n).$$

Consider the odd vector space $\mathbb{R}^{0|m} = \Pi \mathbb{R}^m$. Then

$$S^*(\Pi\mathbb{R}^m)^* = \oplus_{k=0}^{\infty} S^k(\Pi\mathbb{R}^m)^* = \oplus_{k=0}^{\infty} \Lambda^k(\mathbb{R}^m)^* = \Lambda^*(\mathbb{R}^m)^* = \Lambda(m).$$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

By this reason,

$$C^{\infty}(\mathbb{R}^{0|m}) = \Lambda(m).$$

Any $f \in C^\infty(\mathbb{R}^{0|m})$ has the form

$$f = f_0 + \sum_{r=1}^m \sum_{1 \le \alpha_1 < \cdots < \alpha_r \le m} f_{\alpha_1 \cdots \alpha_r} \xi^{\alpha_1} \cdots \xi^{\alpha_r}, \quad f_0, f_{\alpha_1 \cdots \alpha_r} \in \mathbb{R}.$$

The functions ξ^{α} should play the role of coordinate functions on the "manifold" $\mathbb{R}^{0|m}$. But

$$\xi^{\alpha}\xi^{\beta}+\xi^{\beta}\xi^{\alpha}=0,\quad (\xi^{\alpha})^{2}=0,$$

i.e. these coordinate functions can not take real values (except 0). Since the coordinate functions should parametrise the points, we get only one point 0 in our "manifold".
 Linear superalgebra
 Lie superalgebras

 Superdomains
 Lie superalgebras of vector fields on ℝ^{0|m}

 Supermanifolds
 About quantum particles and supersymmetry

 Supersymmetries
 Modules over supercommutative superalgebras

By definition, $\mathbb{R}^{0|m}$ is a *supermanifold* of superdimension 0|m; it is a pair

$$\mathbb{R}^{0|m} = (\{0\}, \Lambda(m)),$$

where 0 is the only point of $\mathbb{R}^{0|m}$ and $\Lambda(m)$ is the algebra of superfunctions on $\mathbb{R}^{0|m}$.

Define the value at the point 0 of the superfunction $f \in C^{\infty}(\mathbb{R}^{0|m})$ of the form

$$f = f_0 + \sum_{r=1}^m \sum_{1 \le \alpha_1 < \cdots < \alpha_r \le m} f_{\alpha_1 \cdots \alpha_r} \xi^{\alpha_1} \cdots \xi^{\alpha_r}, \quad f_0, f_{\alpha_1 \cdots \alpha_r} \in \mathbb{R}$$

by

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Consider the tangent space

$$T_0\mathbb{R}^{0|m} = \{A: C^{\infty}(\mathbb{R}^{0|m}) \to \mathbb{R} \,|\, A(fg) = (Af)g(0) + (-1)^{|A||f|}f(0)(Ag)\}.$$

Exercise. The odd vectors $(\partial_{\alpha})_0$ acting by $(\partial_{\alpha})_0 f = (\partial_{\alpha} f)_0$ form a basis of $T_0 \mathbb{R}^{0|m}$, i.e.

$$T_0\mathbb{R}^{0|m}=\mathbb{R}^{0|m}.$$

白 と く ヨ と く ヨ と …

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Vector fields on $\mathbb{R}^{0|m}$:

$$\mathcal{T}_{\mathbb{R}^{0|m}} = \{A: C^{\infty}(\mathbb{R}^{0|m}) \rightarrow C^{\infty}(\mathbb{R}^{0|m}) \,|\, A(\mathit{fg}) = (A\mathit{f})g + (-1)^{|A||\mathit{f}|}\mathit{f}(Ag)\}.$$

Define the odd vectorfields $\frac{\partial}{\partial \xi^{\alpha}} = \partial_{\alpha}$ assuming $\partial_{\alpha} \xi^{\beta} = \delta^{\beta}_{\alpha}$.

Exercise.
$$\mathcal{T}_{\mathbb{R}^{0|m}} = \Lambda(m) \otimes_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} \{\partial_{1}, ..., \partial_{m}\} = \Lambda(m) \otimes_{\mathbb{R}} \mathbb{R}^{0|m}$$
.

Define the Lie superbrackets by

$$[A,B] = A \circ B - (-1)^{|A||B|} B \circ A.$$

The Lie superalgebra $\mathcal{T}_{\mathbb{R}^{0|m}}$ with this brackets is denoted by $\mathfrak{vect}(0|m,\mathbb{R})$. It is a finite-dimensional Lie superalgebra. For $m \ge 2$ it is **simple**.

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

For $X = X^{\alpha} \partial_{\alpha} \in \mathfrak{vect}(0|m,\mathbb{R})$ define its divergence

$$\operatorname{div} X = \sum_{\alpha} (-1)^{|X^{\alpha}|} \partial_{\alpha} X^{\alpha}.$$

Define the special (divergence-free) vectorial Lie superalgebra

$$\mathfrak{svect}(0|m) = \{X \in \mathfrak{vect}(0|m, \mathbb{R}) | \operatorname{div} X = 0\}.$$

It is simple for $m \geq 3$.

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let
$$m = 2k$$
. Consider the 2-form $\omega = \sum_{\alpha=1}^{k} d\xi^{\alpha} \circ d\xi^{\alpha+k}$. Assume
 $|d\xi^{\alpha}| = \overline{0}, \ d\xi^{\alpha} \circ d\xi^{\beta} = d\xi^{\beta} d\xi^{\alpha}$.

Define the Lie superalgebra of Hamiltonian vector fields

$$\widetilde{\mathfrak{h}}(0|2k,\mathbb{R}) = \{X \in \mathfrak{vect}(0|2k,\mathbb{R}) \,|\, L_X \omega = 0\}.$$

The Lie superalgebra $\mathfrak{h}(0|2k,\mathbb{R}) = [\tilde{\mathfrak{h}}(0|2k,\mathbb{R}), \tilde{\mathfrak{h}}(0|2k,\mathbb{R})]$ is simple.

< 注→ < 注→

Classification of finite dim. simple complex Lie superalgebras:

- classical type, i.e. the $\mathfrak{g}_{\overline{0}}$ -module $\mathfrak{g}_{\overline{1}}$ is completely reducible $\mathfrak{sl}(n|m,\mathbb{C})$, $\mathfrak{psl}(n|n,\mathbb{C})$, $\mathfrak{osp}(n|2m,\mathbb{C})$, $\mathfrak{pe}(n,\mathbb{C})$, G(3), F(4),...
- Cartan type

 $\mathfrak{vect}(0|n,\mathbb{C}), \,\mathfrak{svect}(0|n,\mathbb{C}), \,\mathfrak{h}(0|2k,\mathbb{C})...$

- V. G. Kac, Lie superalgebras. Adv. Math., 26 (1977), 8-96.
- L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie

Superalgebras, arXiv:hep-th/9607161

(日) (部) (注) (注) (言)

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Peculiarities:

- zero Killing form e.g. on $\mathfrak{psl}(n|n,\mathbb{C})$, $\mathfrak{pe}(n,\mathbb{C})$;
- in general no total reducibility of simple LSA;
- semisimple LSA are of the from $\sum g_i \otimes \Lambda(n_i)$;
- there exist non-trivial irreducible representation of solvable LSA

A B K A B K

 Linear superalgebra
 Lie superalgebras

 Superdomains
 Lie superalgebras of vector fields on ℝ⁰ | m

 Supermanifolds
 About quantum particles and supersymmetry

 Supersymmetries
 Modules over supercommutative superalgebras

The state of a quantum mechanical system is represented by a unit vector (defined up to a phase, i.e. a complex number of length 1) in a complex Hilbert space H.

Let *H* describe the state of a single particle. Then the states of two identical particles v and v' is described by the tensor product

 $H \otimes H$.

Since the particles are identical, the states

 $v \otimes v'$ and $v' \otimes v$

must be the same.

・ロン ・回と ・ヨン・

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

But the state is defined up to a phase, consequently

$$v' \otimes v = \lambda v \otimes v'.$$

Applying this twice, we get $\lambda^2 = 1$, i.e. $\lambda = \pm 1$.

If $\lambda = 1$, then the particle is called *boson*. Two identical bosons are described by a vector in S^2H .

If $\lambda = -1$, then the particle is called *fermion*. Two identical fermions are described by a vector in $\Lambda^2 H$.

ヨット イヨット イヨッ

 Linear superalgebra
 Lie superalgebras

 Superdomains
 Lie superalgebras of vector fields on $\mathbb{R}^{0|m}$

 Supermanifolds
 About quantum particles and supersymmetry

 Supersymmetries
 Modules over supercommutative superalgebras

To unify the bosons and fermions consider the Hilbert superspace

 $H = H_{\overline{0}} \oplus H_{\overline{1}},$

Where $H_{\bar{0}}$ describes a boson and $\Pi H_{\bar{1}}$ describes a fermion.

Then

$$S^2 H = S^2 H_{\bar{0}} \bigoplus H_{\bar{0}} \otimes H_{\bar{1}} \bigoplus S^2 H_{\bar{1}}.$$

But $S^2 H_{\overline{1}} = \Lambda^2 \Pi H_{\overline{1}}$.

Thus the summands of S^2H describe two bosons, or a boson and a fermion, or two fermions.

The sign rule of superalgebra encodes the statistics of a particle!

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let A be a supercommutative superalgebra and M be a real vector superspace.

M is a left A-supermodule if there exists a morphism

$$\cdot: A \otimes_{\mathbb{R}} M \to M, \quad (a, x) \mapsto a \cdot x, \quad |a \cdot x| = |a| + |x|.$$

M can be also considered as a right A-supermodule if we put

$$x \cdot a = (-1)^{|x||a|} a \cdot x.$$

(E) → (E) →

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let M and N be A-supermodules.

A homogeneous map $\varphi: M \to N$ is called A-linear if

$$\varphi(ax) = (-1)^{|\varphi||a|} a\varphi(x).$$

Equivalently,

$$\varphi(xa)=\varphi(x)a.$$

Denote by $\operatorname{Hom}_A(M, N)$ the vector superspace of all A-linear maps from M to N, and set $\operatorname{End}_A(M) = \operatorname{Hom}_A(M, M)$.

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

We say that M over A is free of rank n|m if there exists a basis $e_1, ..., e_{n+m}$ of M over A such that $e_1, ..., e_n \in M_{\overline{0}}$ and $e_{n+1}, ..., e_{n+m} \in M_{\overline{1}}$.

This means that for any $x \in M$ there exist $x^1, ..., x^{n+m} \in A$ such that

$$x = \sum_{a=1}^{n+m} x^a e_a.$$

回 と く ヨ と く ヨ と …

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let *M* and *N* be free *A*-supermodules of ranks m|n and r|s. For an *A*-linear map $\varphi : M \to N$ define $\varphi_a^b \in A$, a = 1, ..., n + m, b = 1, ..., r + s such that

$$arphi(e_{\mathsf{a}}) = \sum_{b=1}^{r+s} f_b arphi_{\mathsf{a}}^b.$$

We get an $r + s \times n + m$ matrix with elements from A.

同 と く ヨ と く ヨ と

 Linear superalgebra
 Lie superalgebras

 Superdomains
 Lie superalgebras of vector fields on $\mathbb{R}^{0|m}$

 Supermanifolds
 About quantum particles and supersymmetry

 Supersymmetries
 Modules over supercommutative superalgebras

Let
$$x = \sum_{a=1}^{n+m} e_a x^a \in M$$
, $y = \varphi(x) = \sum_{b=1}^{r+s} f_b y^b \in N$ then

$$\varphi(x) = \varphi\left(\sum_{a=1}^{n+m} e_a x^a\right) = \sum_{a=1}^{n+m} \varphi(e_a) x^a = \sum_{a=1}^{n+m} \sum_{b=1}^{n+m} f_b \varphi_a^b x^a.$$

We get that

$$y^b = \sum_{a=1}^{n+m} \varphi^b_a x^a.$$

In the matrix form

$$\begin{pmatrix} y^1 \\ \vdots \\ y^{r+s} \end{pmatrix} = \begin{pmatrix} \varphi_1^1 & \cdots & \varphi_{n+m}^1 \\ \vdots & & \vdots \\ \varphi_1^{r+s} & \cdots & \varphi_{n+m}^{r+s} \end{pmatrix} \cdot \begin{pmatrix} x^1 \\ \vdots \\ x^{n+m} \end{pmatrix}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Since we have the decompositions $M = M_{\bar{0}} \oplus M_{\bar{1}}$ and $N = N_{\bar{0}} \oplus N_{\bar{1}}$, the map φ can be divided into 4 parts. According to that we may write

$$\varphi = \begin{pmatrix} \varphi_{\bar{0}\bar{0}} & \varphi_{\bar{0}\bar{1}} \\ \varphi_{\bar{1}\bar{0}} & \varphi_{\bar{1}\bar{1}} \end{pmatrix} = \begin{pmatrix} \varphi_1^1 & \cdots & \varphi_{n+m}^1 \\ \vdots & & \vdots \\ \varphi_1^{r+s} & \cdots & \varphi_{n+m}^{r+s} \end{pmatrix}$$

 φ is even if and only if the entries of the matrices $\varphi_{\bar{0}\bar{0}}$ and $\varphi_{\bar{1}\bar{1}}$ are even and the entries of the matrices $\varphi_{\bar{1}\bar{0}}$ and $\varphi_{\bar{0}\bar{1}}$ are odd.

個人 くほん くほん しき

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

The dual space: $M^* = \operatorname{Hom}_A(M, A)$.

For $\varphi \in \operatorname{Hom}_{A}(M, N)$ define $\varphi^{*} \in \operatorname{Hom}_{A}(N^{*}, M^{*})$,

$$\varphi^*(\xi) = (-1)^{|\varphi||\xi|} \xi \circ \varphi.$$

Then the matrix of φ^* w.r.t. the dual bases f_b^* and e_a^* has the form (exercise)

$$\begin{pmatrix} arphi^t_{ar{0}ar{0}} & (-1)^{|arphi|+1}arphi^t_{ar{1}ar{0}} \ (-1)^{|arphi|}arphi^t_{ar{0}ar{1}} & arphi^t_{ar{1}ar{1}} \end{pmatrix}.$$

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ...

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let *L* be an $r + s \times n + m$ matrix with elements form *A*

$$L = \begin{pmatrix} L_{\bar{0}\bar{0}} & L_{\bar{0}\bar{1}} \\ L_{\bar{1}\bar{0}} & L_{\bar{1}\bar{1}} \end{pmatrix}$$

(i.e. it can be the matrix of a homomorphism from M to N)

We say that *L* is even if the entries of the matrices $L_{\bar{0}\bar{0}}$ and $L_{\bar{1}\bar{1}}$ are even and the entries of the matrices $L_{\bar{1}\bar{0}}$ and $L_{\bar{0}\bar{1}}$ are odd.

Define the supertransposed matrix

$$L^{st} = \begin{pmatrix} L_{\bar{0}\bar{0}}^t & (-1)^{|L|+1} L_{\bar{1}\bar{0}}^t \\ (-1)^{|L|} L_{\bar{0}\bar{1}}^t & L_{\bar{1}\bar{1}}^t \end{pmatrix}$$

▲ 理 ▶ | ▲ 理 ▶ …

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

.

< 注→ < 注→ -

æ

Consider set $Mat_A(n|m)$ of all squire matrices of order n + m with elements from A. It becomes an A-supermodule with respect to the multiplication

$$\mathsf{aL} = egin{pmatrix} \mathsf{aL}_{ar{0}ar{0}} & \mathsf{aL}_{ar{0}ar{1}} \ (-1)^{|\mathsf{a}|}\mathsf{aL}_{ar{1}ar{0}} & (-1)^{|\mathsf{a}|}\mathsf{aL}_{ar{1}ar{1}} \end{pmatrix}$$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

For a homogenious
$$L = \begin{pmatrix} L_{\bar{0}\bar{0}} & L_{\bar{0}\bar{1}} \\ L_{\bar{1}\bar{0}} & L_{\bar{1}\bar{1}} \end{pmatrix}$$
 define the *supertrace*
$$\operatorname{str} L = \operatorname{tr} L_{\bar{0}\bar{0}} - (-1)^{|L|} \operatorname{tr} L_{\bar{1}\bar{1}}.$$

Proposition. str([K, L]) = 0.

æ

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

The group

$$\operatorname{GL}_{\mathcal{A}}(n|m) = \{L \in \operatorname{Mat}_{\mathcal{A}}(n|m) \,|\, |L| = \overline{0}, \, L \text{ is invertible} \}$$

is called general linear supergroup of rank n|m over A.

Example. $\operatorname{GL}_{\mathbb{R}}(n|m) = \operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(m,\mathbb{R}).$

Theorem. Let $L \in Mat_A(n|m)$. Then $L \in GL_A(n|m)$ if and only if $L_{\overline{00}}$ and $L_{\overline{11}}$ are invertible.

▲ 清戸 → 清戸 →

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

Let
$$B = \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix}$$
 be a usual real matrix. Suppose that B_{11} is invertible, then

$$B = egin{pmatrix} 1 & B_{01}B_{11}^{-1} \ 0 & 1 \end{pmatrix} egin{pmatrix} B_{00} - B_{01}B_{11}^{-1}B_{10} & 0 \ B_{10} & B_{11} \end{pmatrix},$$

consequently,

$$\det B = \det(B_{00} - B_{01}B_{11}^{-1}B_{10}) \cdot \det B_{11}.$$

Linear superalgebra	Lie superalgebras
Superdomains	Lie superalgebras of vector fields on $\mathbb{R}^{0 m}$
Supermanifolds	About quantum particles and supersymmetry
Supersymmetries	Modules over supercommutative superalgebras

For $L \in GL_A(n|m)$ define its **superdeterminant** or **Berezian**

$$\operatorname{BerL} = \mathsf{det}(\mathcal{L}_{\overline{0}\overline{0}} - \mathcal{L}_{\overline{0}\overline{1}}\mathcal{L}_{\overline{1}\overline{1}}^{-1}\mathcal{L}_{\overline{1}\overline{0}}) \cdot \mathsf{det}\,\mathcal{L}_{\overline{1}\overline{1}}^{-1} \in \mathcal{A}_{\overline{0}}.$$

Theorem. Ber(
$$KL$$
) = Ber(K) · Ber(L).

$$Ber(E_{n+m} + \epsilon L) = 1 + \epsilon \operatorname{str} L, \ \epsilon^2 = 0.$$

Ber exp $L = e^{\operatorname{str} L}$.

< 口 > < 回 > < 回 > < 回 > < 回 > <

A superdomain of dimension n|m|

$$\mathcal{U}=(U,C^{\infty}(\mathcal{U})), \quad U\subset \mathbb{R}^n, \quad C^{\infty}(\mathcal{U})=C^{\infty}(U)\otimes \Lambda(m).$$

Let $\xi^1,...,\xi^m$ be generators of $\Lambda(m)$, then any $f\in C^\infty(\mathcal{U})$ can be written as

$$f = \tilde{f} + \sum_{r=1}^{m} \sum_{\alpha_1 < \cdots < \alpha_r} f_{\alpha_1 \dots \alpha_r} \xi^{\alpha_1} \cdots \xi^{\alpha_r}, \quad \tilde{f}, f_{\alpha_1 \dots \alpha_r} \in C^{\infty}(U).$$

$$x \in U \quad \Rightarrow \quad f(x) := \widetilde{f}(x) \in \mathbb{R}.$$

イロン イロン イヨン イヨン 三日

Linear superalgebra Superdomains Supermanifolds Supersymmetries

A morphism of superdomains:

$$\varphi:\mathcal{U}=(U,C^{\infty}(\mathcal{U}))
ightarrow\mathcal{V}=(V,C^{\infty}(\mathcal{V}))$$

is a pair

$$arphi = (ilde{arphi}, arphi^*), \quad ilde{arphi} : \mathcal{U} o \mathcal{V}, \quad arphi^* : \mathcal{C}^\infty(\mathcal{V}) o \mathcal{C}^\infty(\mathcal{U})$$

such that

$$(\varphi^* f)(x) = f(\tilde{\varphi}(x)).$$

・ロン ・回 と ・ ヨン ・ モン

æ

If $\psi = (\tilde{\psi}, \psi^*) : \mathcal{V} \to \mathcal{W}$ is another morphism, then the decomposition is defined as

$$\psi \circ \varphi = (\tilde{\psi} \circ \tilde{\varphi}, \varphi^* \circ \psi^*) : \mathcal{U} \to \mathcal{W}.$$

 $\varphi:\mathcal{U}\to\mathcal{V}$ is called a diffeomorphism if it admits an inverse morphism.

イロン イヨン イヨン イヨン

Linear superalgebra Superdomains Supermanifolds Supersymmetries

Example.

The inclusion

$$i = (\tilde{i}, i^*) : U \to \mathcal{U}, \quad \tilde{i}(x) = x, \quad i^*(f) = \tilde{f}.$$

The projection

$$p = (\tilde{p}, p^*) : \mathcal{U} \to \mathcal{U}, \quad \tilde{p}(x) = x, \quad p^*(f) = f.$$

・ロト ・回ト ・ヨト ・ヨト

æ

Proposition. For any morphism of superalgebras

 $\varphi^* : C^{\infty}(\mathcal{V}) \to C^{\infty}(\mathcal{U})$ there exists a unique continuous map $\tilde{\varphi} : U \to V$ such that $\varphi = (\tilde{\varphi}, \varphi^*)$ is a morphism from \mathcal{U} to \mathcal{V} .

Proof. The composition

$$\mathcal{C}^\infty(\mathcal{V}) o \mathcal{C}^\infty(\mathcal{V}) o \mathcal{C}^\infty(\mathcal{U}) o \mathcal{C}^\infty(\mathcal{U})$$

defines map $\varphi: U \to V$, which is compatible with φ^* .

(日) (同) (E) (E) (E)

Corollary. For any morphism $s : C^{\infty}(\mathcal{U}) \to \mathbb{R}$ there exists a unique point $x \in U$ such that s(f) = f(x).

Proof. Since $\mathbb{R} = C^{\infty}(\text{pt})$, $\varphi^* = s$ defines $\varphi : \text{pt} \to \mathcal{U}$. Let $x = \tilde{\varphi}(\text{pt}) \in U$. Since $\varphi^*(f) \in \mathbb{R}$,

$$\varphi^*(f) = \varphi^*(f)(\mathrm{pt}) = f(\tilde{\varphi}(\mathrm{pt})) = f(x).$$

Systems of coordinates.

Consider a superdomain $\mathcal{U} = (U, C^{\infty}(\mathcal{U}) = C^{\infty}(U) \otimes \Lambda(m)).$ Let $x^1, ..., x^n$ be coordinates on $U; \xi^1, ..., \xi^m$ odd generators of $\Lambda(m)$.

The superfunctions $x^1, ..., x^n, \xi^1, ..., \xi^m$ are called coordinates on \mathcal{U} . Denotation (x^i, ξ^α) , or (x^a) , $x^{n+\alpha} = \xi^\alpha$.

Vector fields on \mathcal{U} . $\mathcal{T}_{\mathcal{U}} = (\mathcal{T}_{\mathcal{U}})_{\bar{0}} \oplus (\mathcal{T}_{\mathcal{U}})_{\bar{1}}$,

$$(\mathcal{T}_{\mathcal{U}})_{\overline{i}} = \left\{ X : C^{\infty}(\mathcal{U}) \to C^{\infty}(\mathcal{U}) \middle| \begin{array}{l} |X| = \overline{i}, \ X \text{ is } \mathbb{R}\text{-linear} \\ X(fg) = X(f)g + (-1)^{|f||X|} fX(g) \end{array} \right\}$$

Define the vector fields ∂_{x^i} and $\partial_{\xi^{\alpha}}$ assuming

$$\partial_{x^i}(f\xi^{\alpha_1}\cdots\xi^{\alpha_r})=\frac{\partial f}{\partial x^i}\xi^{\alpha_1}\cdots\xi^{\alpha_r},$$

$$\partial_{\xi^{\alpha}}(f\xi^{\alpha_1}\cdots\xi^{\alpha_r})=\sum_{s=1}^r(-1)^{s-1}\delta^{\alpha\alpha_s}f\xi^{\alpha_1}\cdots\widehat{\xi^{\alpha_s}}\cdots\xi^{\alpha_r}.$$

・ロン ・回と ・ヨン・

æ

Proposition. The $C^{\infty}(\mathcal{U})$ -module $\mathcal{T}_{\mathcal{U}}$ is free of rank n|m. $\mathcal{T}_{\mathcal{U}} = C^{\infty}(\mathcal{U}) \otimes_{\mathbb{R}} \operatorname{span}_{\mathbb{R}} \{\partial_{x^1}, ..., \partial_{\xi^m}\}.$

Proof. Let $X \in \mathcal{T}_{\mathcal{U}}$. We claim that $X = (Xx^a)\partial_a$. Consider

$$\begin{aligned} X' &= X - (Xx^{a})\partial_{a}, \quad X'(fg) = X'(f)g + (-1)^{|f||X'|}fX'(g). \\ \text{For } f \in C^{\infty}(U) \text{ let } X'(f) = \sum X'_{\alpha_{1},\dots,\alpha_{r}}(f)\xi^{\alpha_{1}}\cdots\xi^{\alpha_{r}}, \\ \text{then } X'_{\alpha_{1},\dots,\alpha_{r}} : C^{\infty}(U) \to C^{\infty}(U), \\ X'_{\alpha_{1},\dots,\alpha_{r}}(fg) = X'_{\alpha_{1},\dots,\alpha_{r}}(f)g + fX'_{\alpha_{1},\dots,\alpha_{r}}(g), \quad X'_{\alpha_{1},\dots,\alpha_{r}}(x^{i}) = 0, \\ \implies \quad X'_{\alpha_{1},\dots,\alpha_{r}} = 0, \quad X'(f) = 0. \\ \text{Moreover, } X'(\xi^{\alpha}) = 0 \implies X' = 0. \end{aligned}$$

ヘロン 人間 とくほど くほとう

Linear superalgebra Superdomains Supermanifolds Supersymmetries

Lemma. Let
$$\varphi : \mathcal{U} \to \mathcal{V}$$
 be a morphism, then

$$\frac{\partial}{\partial x^{a}}(\varphi^{*}f) = \sum_{b} \frac{\partial \varphi^{*}(y^{b})}{\partial x^{a}} \varphi^{*}\left(\frac{\partial f}{\partial y^{b}}\right),$$

 $f \in C^{\infty}(\mathcal{V}).$

<ロ> (四) (四) (三) (三) (三)

Theorem. If $\varphi : \mathcal{U} \to \mathcal{V}$ is a morphism and $y^1, ..., y^r, \eta^1, ..., \eta^s$ are coordinates on \mathcal{V} , then the functions $\varphi^*(y^1), ..., \varphi^*(y^r), \varphi^*(\eta^1), ..., \varphi^*(\eta^s)$ uniquely define φ . *Proof.* Note: if $g = \sum g_{\alpha_1,...,\alpha_p} \xi^{\alpha_1} \cdots \xi^{\alpha_p} \in C^{\infty}(\mathcal{U})$, then $g_{\alpha_1,...,\alpha_p} = (\partial_{\xi^{\alpha_p}} \cdots \partial_{\xi^{\alpha_1}} g)^{\sim}$.

First let $f = f(y^1, ..., y^r) \in C^{\infty}(V)$, then we may find $\varphi^*(f)$ using the previous formula and the lemma:

e.g.
$$\partial_{\xi^{\alpha}}\varphi^{*}(f) = \sum_{b} \frac{\partial \varphi^{*}(y^{b})}{\partial \xi^{\alpha}}\varphi^{*}\left(\frac{\partial f}{\partial y^{b}}\right) = \sum_{b} \frac{\partial \varphi^{*}(y^{i})}{\partial \xi^{\alpha}}\varphi^{*}\left(\frac{\partial f}{\partial y^{i}}\right).$$

In general, if $f = \sum f_{\beta_1,...,\beta_p} \theta^{\beta_1} \cdots \theta^{\beta_p} \in C^{\infty}(\mathcal{V})$, then $\varphi^*(f) = \sum \varphi^*(f_{\beta_1,...,\beta_p}) \varphi^*(\theta^{\beta_1}) \cdots \varphi^*(\theta^{\beta_p}).$ This gives the so-called **symbolic way of calculation**: if \mathcal{U} and \mathcal{V} are superdomains with coordinates $(x, \xi) = (x^i, \xi^{\alpha})$ and $(y, \theta) = (y^k, \theta^{\beta})$, a morphism $\varphi : \mathcal{U} \to \mathcal{V}$ can be written symbolically

$$\varphi: (x,\xi) \mapsto (y,\theta), \quad y = y(x,\xi), \ \theta = \theta(x,\xi),$$

where in fact $y^k = \varphi^*(y^k) = y^k(x^i, \xi^\alpha), \ \theta^\beta = \varphi^*(\theta^\beta) = \theta^\beta(x^i, \xi^\alpha).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

We may write $\varphi^*(f)(x^i,\xi^{\alpha}) = f(y^j(x^i,\xi^{\alpha}),\theta(x^i,\xi^{\alpha}))$ and find this function using the above proof.

Example. Let $\mathcal{U} = \mathcal{V} = \mathbb{R}^{1|2}$ with the coordinates x, ξ^1, ξ^2 and φ is given by

$$\varphi^*(x) = x + \xi^1 \xi^2, \quad \varphi^*(\xi^1) = \xi^1, \quad \varphi^*(\xi^2) = \xi^2.$$

Let f = f(x), then $f(x + \xi^1 \xi^2) = (\varphi^* f)(x, \xi^1, \xi^2),$ $(\varphi^* f)(x, \xi^1, \xi^2) = (\varphi^* f)^{\sim}(x) + (\varphi^* f)_{12}(x)\xi^1 \xi^2,$ $(\varphi^* f)^{\sim}(x) = f(x),$

イロト イポト イラト イラト 一日

Linear superalgebra Superdomains Supermanifolds Supersymmetries

$$\begin{aligned} (\varphi^* f)_{12} &= (\partial_{\xi^2} \partial_{\xi^1} \varphi^*(f))^{\sim} = (\partial_{\xi^2} (\partial_{\xi^1} (\varphi^*(x)) \varphi^*(\partial_x f)))^{\sim} = \\ (\partial_{\xi^2} (\xi^2 \varphi^*(\partial_x f)))^{\sim} &= (\varphi^*(\partial_x f))^{\sim} - (\xi^2 \partial_{\xi^2} \varphi^*(\partial_x f))^{\sim} = \partial_x f. \end{aligned}$$

Thus, $f(x + \xi^1 \xi^2) = f(x) + \partial_x f(x) \xi^1 \xi^2$

(ロ) (四) (注) (注) (注) [

We see that if $f \in C^{\infty}(\mathcal{V}^{r|s})$, then we may consider the expression

$$f(g_1,...,g_r,h_1,...,h_s),$$

where $g_1, ..., g_r$ and $h_1, ..., h_r$ are respectively even and odd functions on some \mathcal{U} .

・ロン ・回と ・ヨン ・ヨン

Let $x^1, ..., x^n, \xi^1, ..., \xi^m$ be coordinates on \mathcal{U} . If $\varphi : \mathcal{U} \to \mathcal{V}$ is a diffeomorphism and $y^1, ..., y^n, \eta^1, ..., \eta^m$ are coordinates on \mathcal{V} as above,

then the functions $\varphi^*(y^1), ..., \varphi^*(y^n), \varphi^*(\eta^1), ..., \varphi^*(\eta^m)$ are also called coordinates on \mathcal{U} .

In that case $\varphi^*(y^1), ..., \varphi^*(y^n)$ are not necessary coordinates on U.

By the above considerations, the expression $f(y^j, \theta^\beta) = f(x^i(y^j, \theta^\beta), \xi^\alpha(y^j, \theta^\beta))$ makes sense.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Examples of morphisms.

1. $\varphi : \mathbb{R}^n \to \mathbb{R}^{k|m}$:

since
$$(\theta^{\beta})^2 = 0$$
, $(\varphi^*(\theta^{\beta}))^2 = 0$,
but $\varphi^*(\theta^{\beta}) \in C^{\infty}(\mathbb{R}^n) \Longrightarrow \varphi^*(\theta^{\beta}) = 0$,
thus φ is given by $\tilde{\varphi} : \mathbb{R}^n \to \mathbb{R}^k$.

▲□→ ▲圖→ ▲厘→ ▲厘→

æ

2. $\varphi: \mathbb{R}^{0|2} \to M^{n|0}$: $f \in C^{\infty}M \implies \varphi^*(f) = a(f) + b(f)\xi^1\xi^2, \quad a(f), b(f) \in \mathbb{R}.$ $\varphi^*(fg) = \varphi^*(f)\varphi^*(g) \Longrightarrow a(fg) + b(fg)\xi^1\xi^2 =$ $a(f)b(f) + (a(g)b(f) + a(f)b(g))\xi^{1}\xi^{2}$ $\implies a(fg) = a(f)a(g), \quad b(fg) = a(g)b(f) + a(f)b(g)$ \implies $a: C^{\infty}M \rightarrow \mathbb{R}$ is a homomorphism $\implies \exists x \in M, a(f) = f(x),$ finally, b(fg) = b(g)f(x) + f(x)b(g), i.e. $b \in T_x M$. Thus, φ is defined by a point $x \in m$ and a tangent vector

$$b \in T_x M, \varphi^*(f) = f(x) + b(f)\xi^1\xi^2.$$

<=> <=> <=> <=> <=> <<<>><<<>><</><>

Linear superalgebra Superdomains Supermanifolds Supersymmetries

Example. Let $E \rightarrow U$ be a vector bundle over U,

 $\mathcal{U} = (U, \Gamma(U, \Lambda E)).$

If $\xi^1, ..., \xi^m$ are generators of $\Gamma(U, \Lambda E)$, then $x^1, ..., x^n, \xi^1, ..., \xi^m$ are coordinates on \mathcal{U} .

Any automorphism φ of the bundle $\Lambda E \rightarrow U$ preserving the parity defines the automorphism of \mathcal{U} :

$$\varphi^*(x') = \varphi^0(x', ..., x''),$$

$$\varphi^*(\xi^{\alpha}) = \sum_{r \ge 0} \sum_{\alpha_1 < \cdots < \alpha_{2r+1}} \varphi^{\alpha}_{\alpha_1 \dots \alpha_{2r+1}}(x^1, ..., x'') \xi^{\alpha_1} \cdots \xi^{\alpha_{2r+1}}.$$

Any morphism of $\ensuremath{\mathcal{U}}$ has the coordinate form

$$\varphi^{*}(x^{i}) = \varphi^{0}(x^{1}, ..., x^{n}) + \sum_{r \ge 1} \sum_{\alpha_{1} < \dots < \alpha_{2r}} \varphi^{\alpha}_{\alpha_{1} \dots \alpha_{2r}}(x^{1}, ..., x^{n})\xi^{\alpha_{1}} \dots \xi^{\alpha_{2r}},$$
$$\varphi^{*}(\xi^{\alpha}) = \sum_{r \ge 0} \sum_{\alpha_{1} < \dots < \alpha_{2r+1}} \varphi^{\alpha}_{\alpha_{1} \dots \alpha_{2r+1}}(x^{1}, ..., x^{n})\xi^{\alpha_{1}} \dots \xi^{\alpha_{2r+1}}.$$

・ロト ・回 ト ・ヨト ・ヨト

æ

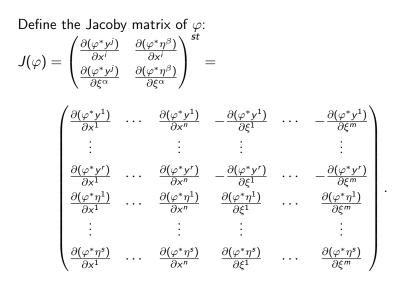
Let $\varphi : \mathcal{U} \to \mathcal{V}$ be a morphism and $X \in \mathcal{T}_{\mathcal{U}}$. We get the map $X \circ \varphi^* : C^{\infty}(\mathcal{V}) \to C^{\infty}(\mathcal{U}).$ Lemma. $\left(\frac{\partial}{\partial x^a} \circ \varphi^*\right) f = \sum_b \frac{\partial \varphi^*(y^b)}{\partial x^a} \varphi^* \left(\frac{\partial f}{\partial y^b}\right), f \in C^{\infty}(\mathcal{V}).$

In the matrix form:

$$\begin{pmatrix} \frac{\partial(\varphi^*f)}{\partial x^i} \\ \frac{\partial(\varphi^*f)}{\partial \xi^\alpha} \end{pmatrix} = \begin{pmatrix} \frac{\partial(\varphi^*y^j)}{\partial x^i} & \frac{\partial(\varphi^*\eta^\beta)}{\partial x^i} \\ \frac{\partial(\varphi^*y^j)}{\partial \xi^\alpha} & \frac{\partial(\varphi^*\eta^\beta)}{\partial \xi^\alpha} \end{pmatrix} \cdot \begin{pmatrix} \varphi^* \frac{\partial f}{\partial y^j} \\ \varphi^* \frac{\partial f}{\partial \eta^\beta} \end{pmatrix}.$$

(日) (同) (E) (E) (E)

Linear superalgebra Superdomains Supermanifolds Supersymmetries



・ロン ・回と ・ヨン ・ヨン

Lemma. If $\varphi : \mathcal{U} \to \mathcal{V}$ and $\psi : \mathcal{V} \to \mathcal{W}$ are morphisms, then

$$J(\psi \circ \varphi) = \varphi^*(J(\psi)) \cdot J(\varphi).$$

<ロ> (四) (四) (三) (三) (三)

Berezin integral.

Let $x^1, ..., x^n, \xi^1, ..., \xi^m$ be coordinates on \mathcal{U} such that $x^1, ..., x^n$ are coordinates on U; let $f \in C^{\infty}(\mathcal{U})$. to define $\int_{\mathcal{U}} f$ assume the following:

$$\int d\xi^{\alpha} = 0, \quad \int \xi^{\alpha} d\xi^{\alpha} = 1, \quad \xi^{\alpha} d\xi^{\beta} = -d\xi^{\beta} \cdot \xi^{\alpha}, \quad \xi^{\alpha} dx^{i} = dx^{i} \cdot \xi^{\alpha}.$$

Using that, we get

$$\int_{\mathcal{U}} dx^1 \cdots dx^n d\xi^1 \cdots d\xi^m f = (-1)^{\frac{m(m-1)}{2}} \int_{\mathcal{U}} dx^1 \cdots dx^n f_{1 \cdots m}.$$

Note that

$$\int_{\mathcal{U}} dx^1 \cdots dx^n d\xi^1 \cdots d\xi^m f = \int_{U} dx^1 \cdots dx^n \partial_{\xi^1} \cdots \partial_{\xi^m} f.$$

Theorem. Let $\varphi : \mathcal{U} \to \mathcal{V}$ be a diffeomorphism of superdomains. Let $f \in C^{\infty}(\mathcal{V})$ have a compact support. Then

$$\int_{\mathcal{V}} f = \int_{\mathcal{U}} \varphi^* f \cdot \operatorname{Ber}(J(\varphi)).$$

イロン イヨン イヨン イヨン

3

Sheaves. Let M be a topological space. A sheaf \mathcal{F} of algebras (vector spaces, groups,...) on M is an assignment

 $U\mapsto \mathcal{F}(U)$

to each open subset $U \subset M$ of an algebra (vector space, group) $\mathcal{F}(U)$ such that the following conditions are satisfied.

If $V \subset U$, then there exists a homomorphism map

$$\rho_{U,V}: \mathcal{F}(U) \to \mathcal{F}(V), \quad f \mapsto \rho_{U,V}(f)$$

such that 1) $\rho_{U,U} = \operatorname{id}$; 2) $\rho_{W,V} = \rho_{U,V} \circ \rho_{W,U}$, $V \subset U \subset W$ 3) if (U_i) is a covering of U, $f_i \in \mathcal{F}(U_i)$, $\rho_{U_i,U_i \cap U_j}(f_i) = \rho_{U_j,U_i \cap U_j}(f_j)$, then there exists a unique $f \in \mathcal{F}(U)$ such that $\rho_{U,U_j}f = f_i$.

Supermanifolds Lie supergroups Functor of points

A morphism $\varphi: \mathcal{F} \to \mathcal{T}$ of two sheaves on M is a collection of maps

$$\varphi(U): \mathcal{F}(U) \to \mathcal{T}(U),$$

 $U \subset M$ is open such that

$$r_{U,V} \circ \varphi(U) = \varphi(V) \circ \rho_{U,V}, \quad V \subset U.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

Example. *M* is a smooth manifold, and C_M^{∞} is the sheaf of smooth functions on *M*: $C_M^{\infty}(U)$ are smooth functions on the subset $U \subset M$.

Note that a smooth manifolds may be defined as a pair (M, C_M^{∞}) , where M is a Hausdorf topological space, and C_M^{∞} is a sheaf of commutative algebras on M locally isomorphic to the sheaf of smooth functions on an open subset of \mathbb{R}^n .

(ロ) (同) (E) (E) (E)

Supermanifolds Lie supergroups Functor of points

Example. $E \rightarrow M$ is a vector bundle over a smooth manifold M,

 $U \mapsto \Gamma(U, E)$ is the sheaf of smooth sections of E.

Note that this sheaf allows to reconstruct E.

イロン イヨン イヨン イヨン

æ

Supermanifolds Lie supergroups Functor of points

Definition of a supermanifold:

A supermanifold of dimension n|m is a pair $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}})$, where M is a Hausdorf topological space, and $\mathcal{O}_{\mathcal{M}}$ is a sheaf of commutative superalgebras on M locally isomorphic to the sheaf of superfunctions on an open subset of $\mathbb{R}^{n|m}$.

・ロト ・回ト ・ヨト ・ヨト

Supermanifolds Lie supergroups Functor of points

A morphism of two supermanifolds $\varphi:\mathcal{M}\rightarrow\mathcal{N}$ is a pair

 $\varphi = (\tilde{\varphi}, \varphi^*)$, where $\tilde{\varphi} : M \to N$ is a continuous map and a morphism of sheaves

$$\varphi^*: \mathcal{O}_{\mathcal{N}} \to \varphi_* \mathcal{O}_{\mathcal{M}},$$

here $\varphi_* \mathcal{O}_{\mathcal{M}}$ is the induced sheaf on *N*:

$$arphi_*\mathcal{O}_\mathcal{M}(U)=\mathcal{O}_\mathcal{M}(arphi^{-1}(U)),\ U\subset \mathsf{N}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Supermanifolds Lie supergroups Functor of points

Consider \mathcal{M} and define the sheaf C_M^∞ :

$$C^{\infty}_{M}(U) = \mathcal{O}_{\mathcal{M}}(U)/(\mathcal{O}_{\mathcal{M}}(U)_{\overline{1}}).$$

Then C_M^{∞} defines the structure of a smooth manifold on M.

▲□ → ▲圖 → ▲ 国 → ▲ 国 → →

3

Linear superalgebra Superdomains Supermanifolds Supersymmetrices Functor of points

The inclusion

$$i = (\tilde{i}, i^*) : M \to \mathcal{M}, \quad \tilde{i}(x) = x, \quad i^*(f) = \tilde{f},$$

where

$$f\in \mathcal{O}_{\mathcal{M}}(U)\mapsto \widetilde{f}\in \mathcal{C}^\infty_{\mathcal{M}}(U)=\mathcal{O}_{\mathcal{M}}(U)/(\mathcal{O}_{\mathcal{M}}(U)_{\overline{1}}).$$

If there exists a splitting $\mathcal{O}_{\mathcal{M}}(U) = C^{\infty}_{\mathcal{M}}(U) \oplus (\mathcal{O}_{\mathcal{M}}(U)_{\overline{1}})$, then there is an inclusion $C^{\infty}_{\mathcal{M}}(U) \subset \mathcal{O}_{\mathcal{M}}(U)$, and one considers the projection

$$p=(ilde{p},p^*):\mathcal{M}
ightarrow M,\quad ilde{p}(x)=x,\quad p^*(f)=f,$$

イロト イヨト イヨト イヨト

æ

Supermanifolds Lie supergroups Functor of points

Example. Let $E \rightarrow M$ be a vector bundle over M, define

$$\mathcal{O}_{\mathcal{M}}(U) = \Gamma(U, \Lambda E), \quad U \subset M.$$

Anton Galaev Intoduction to Supergeometry

< □ > < □ > < □ > < □ > < □ > < □ > = □

Supermanifolds Lie supergroups Functor of points

Definition of a supermanifold using local charts

A coordinate chart on a topological space M is a pair (\mathcal{U}, c) , where $\mathcal{U} \subset \mathbb{R}^{n|m}$ is a superdomain, and $c : U \to M$ is a homeomorphism on c(U).

Two charts (\mathcal{U}_1, c_1) and (\mathcal{U}_2, c_2) are compatible, if there exists a diffeomorphism

$$\gamma_{12}: (U_{12}, C^{\infty}\mathcal{U}_1|_{U_{12}}) \to (U_{21}, C^{\infty}\mathcal{U}_2|_{U_{21}}), \quad \tilde{\gamma}_{12} = c_2^{-1} \circ c_1|_{U_{12}}$$

$$U_{12} = c_1^{-1}(c_1(U_1) \cap c_2(U_2)), \quad U_{21} = c_2^{-1}(c_1(U_1) \cap c_2(U_2))$$

イロン イロン イヨン イヨン 三日

Supermanifolds Lie supergroups Functor of points

An atlas on a topological space M is a set of compatible charts $((\mathcal{U}_{\alpha}, c_{\alpha}), \gamma_{\alpha\beta})$ such that $\cup_{\alpha} c_{\alpha}(\mathcal{U}_{\alpha}) = M$, $\gamma_{\beta\alpha} = \gamma_{\alpha\beta}^{-1}$, $\gamma_{\alpha\beta}\gamma_{\beta\delta}\gamma_{\delta\alpha} = \mathrm{id}$.

A supermanifold \mathcal{M} is a pair: a topological space M and an atlas $((\mathcal{U}_{\alpha}, c_{\alpha}), \gamma_{\alpha\beta}).$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Product of supermanifolds

If \mathcal{U} and \mathcal{V} are superdomains with the coordinates $x^{1},...,x^{n},\xi^{1},...\xi^{m}, y^{1},...,y^{r},\theta^{1},...,\theta^{s}$, then $\mathcal{U} \times \mathcal{V}$ is a superdomain with the base $U \times V$ and coordinates $x^{1},...,x^{m},y^{1},...,y^{r},\xi^{1},...,\xi^{m},\theta^{1},...,\theta^{s}$. If $\mathcal{M} = (M,(\mathcal{U}_{\alpha},c_{\alpha}),\gamma_{\alpha\beta})$ and $\mathcal{N} = (N,(\mathcal{V}_{\mu},c_{\mu}),\gamma_{\mu\nu})$ are supermanifolds, then the product $\mathcal{M} \times \mathcal{N}$ is defined by

$$(M imes N, (\mathcal{U}_{lpha} imes \mathcal{V}_{\mu}, \boldsymbol{c}_{lpha} imes \boldsymbol{c}_{\mu}), \gamma_{lphaeta} imes \gamma_{\mu
u}).$$

(日) (同) (E) (E) (E)

Supermanifolds Lie supergroups Functor of points

Theorem of Batchelor (1979).

Let $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}})$ be a supermanifold. Then there exists a vector bundle $E \to M$ such that $\mathcal{M} \simeq (M, \Gamma(\cdot, \Lambda E))$.

Moreover, there is the following one-to-one correspondence:

 $\left\{\begin{array}{l} \text{Supermanifolds} \\ \text{of dim. } n|m \text{ mod.} \\ \text{isomorphisms of supermf.} \end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{vector bundles of rank } m \\ \text{over } n\text{-dim. smooth} \\ \text{manifolds mod.} \\ \text{isom. of vector bundles.} \end{array}\right\}$

Morphisms of supermanifolds are in general not induced by morphisms of vector bundles! Linear superalgebra **Supermanifolds** Superdomains Supermanifolds Supersymmetries

The tangent sheaf: $\mathcal{T}_{\mathcal{M}} = (\mathcal{T}_{\mathcal{M}})_{\bar{0}} \oplus (\mathcal{T}_{\mathcal{M}})_{\bar{1}}$,

$$(\mathcal{T}_{\mathcal{M}})_{\overline{i}}(U) =$$

$$\begin{cases}
X : \mathcal{O}_{\mathcal{M}}(U) \to \mathcal{O}_{\mathcal{M}}(U) \\
X(fg) = X(f)g + (-1)^{|f||X|} fX(g)
\end{cases}$$

The vector fields $\partial_i = \partial_{x^i}$, $\partial_\alpha = \partial_{\xi^\alpha}$ form a local basis of $\mathcal{T}_{\mathcal{M}}(U)$

 $\Rightarrow \mathcal{T}_{\mathcal{M}}$ is a locally free sheaf of supermodules over $\mathcal{O}_{\mathcal{M}}$

・ロン ・回と ・ヨン ・ヨン

Supermanifolds Lie supergroups Functor of points

 $x \in M$, the tangent space:

$$T_{\mathsf{x}}\mathcal{M} = \{X: \mathcal{O}_{\mathcal{M},\mathsf{x}} \to \mathbb{R} | X(fg) = X(f)g(\mathsf{x}) + (-1)^{|f||X|}f(\mathsf{x})X(g)\}.$$

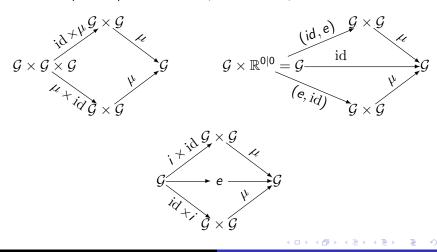
The vectors $(\partial_{x^1})_x, ..., (\partial_{\xi^m})_x$ span $T_x \mathcal{M} ((\partial_{x^a})_x f = (\partial_{x^a} f)(x)).$

Note: $(T_x\mathcal{M})_{\bar{0}} = T_x\mathcal{M}.$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

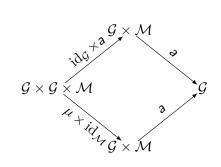
A Lie supergroup is a supermanifold $\mathcal{G} = (\mathcal{G}, \mathcal{O}_{\mathcal{G}})$ together with three morphisms $\mu : \mathcal{G} \times \mathcal{G} \to \mathcal{G}, \quad i : \mathcal{G} \to \mathcal{G}, \quad e : \mathbb{R}^{0|0} \to \mathcal{G}$



Action of a Lie supergroup ${\mathcal G}$ on a supermanifold ${\mathcal M}_{:}$ is a morphism

$$\mathsf{a}:\mathcal{G} imes\mathcal{M} o\mathcal{M}$$

such that



イロン イヨン イヨン イヨン

æ

Supermanifolds Lie supergroups Functor of points

The Lie superalgebra of a Lie supergroup.

A vectorfield $X \in \mathcal{T}_{\mathcal{G}}(G)$ is called left-invariant if

$$(1\otimes X)\circ\mu^*=\mu^*\circ X:\mathcal{O}_\mathcal{G}(\mathcal{G}) o\mathcal{O}_{\mathcal{G} imes\mathcal{G}}(\mathcal{G} imes\mathcal{G}).$$

The Lie superalgebra \mathfrak{g} of the Lie supergroup \mathcal{G} is the Lie superalgebra of left-invariant vector fields on \mathcal{G} .

イロン イヨン イヨン イヨン

Supermanifolds Lie supergroups Functor of points

Proposition. The vector superspace \mathfrak{g} can be identified with the tangent space $\mathcal{T}_e\mathcal{G}$.

The isomorphism is given by

$$X_e \in T_e \mathcal{G} \mapsto X = (1 \otimes X_e) \circ \mu^* \in \mathfrak{g}.$$

Note: $\mathfrak{g}_{\bar{0}}$ is the Lie algebra of G.

・ロン ・回と ・ヨン・

æ

Supermanifolds Lie supergroups Functor of points

Super Harish-Chandra pairs.

The Lie supergroup G defines canonically the pair (G, \mathfrak{g}) , $\mathfrak{g}_{\bar{0}} = Lie(G)$;

there exists Ad : $G \to \mathfrak{gl}(\mathfrak{g})$,

$$\mathrm{Ad}|_{{\boldsymbol{G}}\times\mathfrak{g}_{\bar{0}}}=\mathrm{Ad}_{{\boldsymbol{G}}},\quad {\boldsymbol{d}}\mathrm{Ad}|_{\mathfrak{g}_{\bar{0}}\times\mathfrak{g}_{\bar{1}}}=[\cdot,\cdot]_{\mathfrak{g}_{\bar{0}}\times\mathfrak{g}_{\bar{1}}}.$$

Conversely, any such pair (G, \mathfrak{g}) defines a Lie supergroup \mathcal{G} .

・ロン ・回と ・ヨン・

Example. An action $a : \mathcal{G} \times \mathcal{M} \to \mathcal{M}$ can be given by an action of G on \mathcal{M} and by a morphism

 $\mathfrak{g}
ightarrow (\mathcal{T}_{\mathcal{M}}(M))^0$

such that the differential of the action of *G* coincides with the representation of $\mathfrak{g}_{\bar{0}}$.

・ロン ・回と ・ヨン ・ヨン

æ

Supermanifolds Lie supergroups Functor of points

Example. A representation of G on a vector superspace V consists of a representation of G on V and of a morphism

$\mathfrak{g} ightarrow \mathfrak{gl}(V)$

such that the differential of the representation of G coincides with the representation of $\mathfrak{g}_{\bar{0}}$.

イロト イヨト イヨト イヨト

Supermanifolds Lie supergroups Functor of points

Example.

 $\mathcal{GL}(n|m,\mathbb{R}) = (\mathrm{GL}(n,\mathbb{R}) \times \mathrm{GL}(m,\mathbb{R}),\mathfrak{gl}(n|m,\mathbb{R})),$

 $\operatorname{OSp}(n|2m,\mathbb{R}) = (\operatorname{O}(n) \times \operatorname{Sp}(2m,\mathbb{R}), \mathfrak{osp}(n|2m,\mathbb{R})).$

・ロト ・回ト ・ヨト ・ヨト

3

Functor of points.

Let \mathcal{M} be a fixed supermanifold, and \mathcal{S} is another supermanifold. An \mathcal{S} -point of \mathcal{M} is a morphism $\mathcal{S} \to \mathcal{M}$.

The set of S-points of \mathcal{M} :

$$\mathcal{M}(\mathcal{S}) = \operatorname{Hom}(\mathcal{S}, \mathcal{M}).$$

Any morphism $\psi: \mathcal{S}_1 \to \mathcal{S}_2$ defines the morphism

$$\mathcal{M}(\psi) : \mathcal{M}(\mathcal{S}_2) \to \mathcal{M}(\mathcal{S}_1), \quad \varphi \mapsto \psi \circ \varphi.$$

The map $\mathcal{S} \mapsto \mathcal{M}(\mathcal{S})$ is a contravariant functor from the category of supermanifolds to the category of sets.

Linear superalgebra Superdomains Supermanifolds Lie supergroups Supersymmetries

A morphism of supermanifolds $\varphi : \mathcal{M} \to \mathcal{N}$ induces the map

$$\varphi_{\mathcal{S}}: \mathcal{M}(\mathcal{S}) \to \mathcal{N}(\mathcal{S}), \quad \psi \mapsto \varphi \circ \psi.$$

Yoneda's Lemma. For given maps $\{f_{\mathcal{S}} : \mathcal{M}(\mathcal{S}) \to \mathcal{N}(\mathcal{S})\}_{\mathcal{S}}$ that are functorial in S, there exists a unique morphism $\varphi : \mathcal{M} \to \mathcal{N}$ such that $\varphi_{\mathcal{S}} = f_{\mathcal{S}}$. $\alpha : \mathcal{T} \to \mathcal{S}$ $\begin{array}{c} \mathcal{M}(\mathcal{S}) \xrightarrow{f_{\mathcal{S}}} \mathcal{N}(\mathcal{S}) \\ \mathcal{M}(\alpha) \\ \downarrow \\ \mathcal{M}(\mathcal{T}) \xrightarrow{f_{\mathcal{T}}} \mathcal{N}(\mathcal{T}) \end{array}$

Anton Galaev Intoduction to Supergeometry

Proof. Definition of $\varphi : \mathcal{M} \to \mathcal{N}$:

 $\varphi = f_{\mathcal{M}}(\mathrm{id}_{\mathcal{M}})$, where $f_{\mathcal{M}} : \mathcal{M}(\mathcal{M}) \to \mathcal{N}(\mathcal{M})$

Proof of the equality $f_{\mathcal{S}} = \varphi_{\mathcal{S}} : \mathcal{M}(\mathcal{S}) \to \mathcal{N}(\mathcal{S})$: Let $\alpha \in \mathcal{M}(\mathcal{S})$, i.e. $\alpha : \mathcal{S} \to \mathcal{M}$,

$$\begin{array}{c|c} \mathcal{M}(\mathcal{M}) \xrightarrow{f_{\mathcal{M}}} \mathcal{N}(\mathcal{M}) \\ \\ \mathcal{M}(\alpha) \\ \downarrow \\ \mathcal{M}(\mathcal{S}) \xrightarrow{f_{\mathcal{S}}} \mathcal{N}(\mathcal{S}) \end{array}$$

 $\varphi_{\mathcal{S}}(\alpha) = \varphi \circ \alpha = f_{\mathcal{M}}(\mathrm{id}_{\mathcal{M}}) \circ \alpha = \mathcal{N}(\alpha)(f_{\mathcal{M}}(\mathrm{id}_{\mathcal{M}})) = f_{\mathcal{S}} \circ \mathcal{M}(\alpha)(\mathrm{id}_{\mathcal{M}}) = f_{\mathcal{S}} \circ \alpha = f_{\mathcal{S}}(\alpha)$

Supermanifolds Lie supergroups Functor of points

Proposition. If $\mathcal M$ and $\mathcal N$ are supermanifolds, then

 $\operatorname{Hom}(\mathcal{M},\mathcal{N})=\operatorname{Hom}(\mathcal{O}_{\mathcal{N}}(N),\mathcal{O}_{\mathcal{M}}(M)).$

・ロン ・回 と ・ヨン ・ヨン

æ

Example. The supermanifold $\mathcal{M} = \mathbb{R}^{0|1}$. Any \mathcal{S} -point

 $\varphi: \mathcal{S} \rightarrow \mathbb{R}^{0|1}$ is defined by the morphism

$$arphi^*: \mathcal{C}^\infty(\mathbb{R}^{0|1}) = \mathbb{R} \xi o \mathcal{O}_\mathcal{S}(\mathcal{S}),$$

which is given by the odd superfunction $\varphi^*(\xi)$ of $\mathcal{O}_{\mathcal{S}}(S)_{\overline{1}}$. This superfunction describes elements of $\mathbb{R}^{0|1}(\mathcal{S})$, i.e. it plays the role of usual coordinate on this space, we denote it simply by ξ . If $\alpha : \mathcal{T} \to \mathcal{S}$ is a morphism than

$$\mathcal{M}(\alpha): \mathcal{M}(\mathcal{S}) = \mathcal{O}_{\mathcal{S}}(\mathcal{S})_{\overline{1}} \to \mathcal{M}(\mathcal{T}) = \mathcal{O}_{\mathcal{T}}(\mathcal{T})_{\overline{1}}, \ \mathcal{M}(\alpha)(\varphi) = \varphi \circ \alpha = \alpha^*,$$

i.e. the map $\mathcal{M}(\alpha)$ is given by $\xi \to \alpha^*(\xi)$. Thus, $\mathbb{R}^{0|1}(\mathcal{S}) = \mathcal{O}_{\mathcal{S}}(\mathcal{S})_{\overline{1}}, \ \mathcal{M}(\alpha) = \alpha^*$.

Example. The supermanifold $\mathbb{R}^{n|m}$. Any S-point $\varphi : S \to \mathbb{R}^{n|m}$ is defined by the morphism

$$arphi^*: \mathcal{C}^\infty(\mathbb{R}^{n|m}) = \mathcal{C}^\infty(\mathbb{R}^n) \otimes_\mathbb{R} \Lambda(m) o \mathcal{O}_\mathcal{S}(\mathcal{S}),$$

which is given by *n* even and *m* odd elements of $\mathcal{O}_{\mathcal{S}}(S)$,

$$arphi^*(x^1), ..., arphi^*(x^n), arphi^*(\xi^1), ..., arphi^*(\xi^m), \quad hence,$$

 $\mathbb{R}^{n|m}(\mathcal{S}) = \mathcal{O}_{\mathcal{S}}(S)^n_{\overline{0}} \oplus \mathcal{O}_{\mathcal{S}}(S)^m_{\overline{1}} = (\mathcal{O}_{\mathcal{S}}(S) \otimes \mathbb{R}^{n|m})_{\overline{0}}$

Let us denote the above functions again by

$$x^1, ..., x^n, \xi^1, ..., \xi^m.$$

These coordinates describe the elements of $\mathbb{R}^{n|m}(\mathcal{S})$.

Supermanifolds Lie supergroups Functor of points

If $\alpha:\mathcal{T}\to\mathcal{S}$ is a morphism then

$$\mathcal{M}(\alpha) : \mathcal{M}(\mathcal{S}) \to \mathcal{M}(\mathcal{T}), \quad \mathcal{M}(\alpha)\varphi = \varphi \circ \alpha,$$

and $\mathcal{M}(\alpha)$ is defined by $\alpha^*(\varphi^*x^1), ..., \alpha^*(\varphi^*\xi^m)$, i.e. $\mathcal{M}(\alpha) = \alpha^*$.

・ロン ・回 と ・ヨン ・ヨン

3

Linear superalgebra Superdomains Supermanifolds Lie supergroups Functor of points

Any morphism $\varphi : \mathbb{R}^{n|m} \to \mathbb{R}^{r|s}$ is defined by the morphisms $\varphi_{S} : \mathbb{R}^{n|m}(S) \to \mathbb{R}^{r|s}(S)$ that can be described in coordinates:

$$\varphi_{\mathcal{S}}(x^1,...,\xi^m) = (y^1,...,\theta^s).$$

This gives an explanation to the **symbolic way of calculation**: if \mathcal{M} and \mathcal{N} are supermanifolds with local coordinates $(x,\xi) = (x^i,\xi^{\alpha})$ and $(y,\theta) = (y^k,\theta^{\beta})$, a morphism $\varphi : \mathcal{M} \to \mathcal{N}$ can be written symbolically

$$\varphi: (x,\xi) \mapsto (y,\theta), \quad y = y(x,\xi), \ \theta = \theta(x,\xi),$$

where in fact $y^k = \varphi^*(y^k) = y^k(x^i, \xi^{\alpha}), \ \theta^{\beta} = \varphi^*(\theta^{\beta}) = \theta^{\beta}_*(x^i, \xi^{\alpha}).$

Linear superalgebra Superdomains Supermanifolds Supersymmetries Lie supergroups Functor of points

Example. (The supertranslation group of dimension 1|1)

Consider the supermanifold $\mathbb{R}^{1|1}$ and define the structure of the Lie supergroup on it

$$\mu: \mathbb{R}^{1|1} \times \mathbb{R}^{1|1} \to \mathbb{R}^{1|1}, \quad \mu^*(x) = x' + x'' + \xi'\xi'', \quad \mu^*(\xi) = \xi' + \xi''.$$

If we consider (x,ξ) as abstract coordinates on the set of (S-points) of $\mathbb{R}^{1|1}$, then the multiplication is given by

$$((x',\xi'),(x'',\xi''))\mapsto (x'+x''+\xi'\xi'',\xi'+\xi'')$$

・ロン ・回と ・ヨン・

Exercise. The Lie superalgebra of $\mathbb{R}^{1|1}$ is spanned by the vector fields ∂_x and $D = -\xi \partial_x + \partial_\xi$;

$$[D,D]=2D^2=-2\partial_t.$$

イロン イヨン イヨン イヨン

æ

A Lie supergroup can be defined in terms of its S-points:

A supermanifold ${\mathcal G}$ is a Lie supergroup iff

for every supermanifold S, $\mathcal{G}(S)$ is a group, and for any morphism $\alpha : \mathcal{T} \to S$ of supermanifolds, $\mathcal{G}(\alpha) : \mathcal{G}(S) \to \mathcal{G}(\mathcal{T})$ is a group homomorphism.

The action of \mathcal{G} on \mathcal{M} can be described as the action of the group $\mathcal{G}(\mathcal{S})$ on the set $\mathcal{M}(\mathcal{S})$,

$$a_{\mathcal{S}}:\mathcal{G}(\mathcal{S}) imes\mathcal{M}(\mathcal{S}) o\mathcal{M}(\mathcal{S}).$$

・ロン ・回と ・ヨン ・ヨン

Linear superalgebra Superdomains Supermanifolds Supersymmetries Supersymmetries

Example.

Recall that
$$\operatorname{Mat}(n|m,\mathbb{R}) = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
,
 $\operatorname{Mat}(n|m,\mathbb{R})_{\overline{0}} = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$, $\operatorname{Mat}(n|m,\mathbb{R})_{\overline{1}} = \begin{pmatrix} 0 & B \\ C & 0 \end{pmatrix}$

We may identify this space with $\mathbb{R}^{n^2+m^2|2nm}$.

We have the following coordinates: x_{ij} , $y_{\alpha\beta}$, $\theta_{i\alpha}$, $\bar{\theta}_{\alpha i}$, $x_{ij}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = A_{ij}$, $\theta_{i\alpha}\begin{pmatrix} A & B \\ C & D \end{pmatrix} = B_{i\alpha}$, ... These coordinates is a basis of $Mat(n|m, \mathbb{R})^*$. .

イロト イヨト イヨト イヨト

As the supermanifold,

 $\operatorname{Mat}(n|m,\mathbb{R}) = (\operatorname{Mat}(n,\mathbb{R}) \times \operatorname{Mat}(m,\mathbb{R}), C^{\infty}(\operatorname{Mat}(n|m,\mathbb{R}))).$

Define the map

 $\mu = (\tilde{\mu}, \mu^*) : \operatorname{Mat}(n|m, \mathbb{R}) \times \operatorname{Mat}(n|m, \mathbb{R}) \to \operatorname{Mat}(n|m, \mathbb{R}),$ $\tilde{\mu}$ is the multiplication of matrices, $\mu^* = \operatorname{mult}^*$, where $\operatorname{mult} : \operatorname{Mat}(n|m, \mathbb{R}) \otimes \operatorname{Mat}(n|m, \mathbb{R}) \to \operatorname{Mat}(n|m, \mathbb{R})$ is the multiplication.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Linear superalgebra Superdomains Supermanifolds Supersymmetries Supersymmetries

The subset $\operatorname{GL}(n,\mathbb{R})\times\operatorname{GL}(m,\mathbb{R})\subset\operatorname{Mat}(n,\mathbb{R})\times\operatorname{Mat}(m,\mathbb{R})$ is open.

Consider the superdomain $\mathcal{GL}(n|m,\mathbb{R})$

 $= (\operatorname{GL}(n,\mathbb{R})\times\operatorname{GL}(m,\mathbb{R}), C^{\infty}(\operatorname{Mat}(n|m,\mathbb{R}))|_{\operatorname{GL}(n,\mathbb{R})\times\operatorname{GL}(m,\mathbb{R})}).$

Together with the multiplication μ it is a Lie supergroup.

・ロン ・回と ・ヨン・

Linear superalgebra Superdomains Supermanifolds Supersymmetries Supersymmetries

Recall that $\mathbb{R}^{n|m}(\mathcal{S}) = (\mathcal{O}_{\mathcal{S}}(S) \otimes \mathbb{R}^{n|m})_{\bar{0}}$. Hence,

 $\operatorname{Mat}(n|m,\mathbb{R})(\mathcal{S}) = (\mathcal{O}_{\mathcal{S}}(\mathcal{S}) \otimes \operatorname{Mat}(n|m,\mathbb{R}))_{\bar{0}} = \operatorname{Mat}(n|m,\mathcal{O}_{\mathcal{S}}(\mathcal{S}))_{\bar{0}}.$

The set $\operatorname{Mat}(n|m, \mathcal{O}_{\mathcal{S}}(S))_{\overline{0}}$ can be viewed as the set of endomorphisms of the $\mathcal{O}_{\mathcal{S}}(S)_{\overline{0}}$ -module $\mathbb{R}^{n|m}(\mathcal{S}) = (\mathcal{O}_{\mathcal{S}}(S) \otimes \mathbb{R}^{n|m})_{\overline{0}}.$

The subset of automorphisms is the subgroup $GL(n|m, \mathcal{O}_{\mathcal{S}}(S))$.

The Lie supergroup $\mathcal{GL}(n|m,\mathbb{R})$ can be described in terms of the functor of point: $S \mapsto \mathcal{GL}(n|m,\mathbb{R})(S) = \operatorname{GL}(n|m,\mathcal{O}_{\mathcal{S}}(S)).$ The multiplication $\mu_{\mathcal{S}}$ is the multiplication of matrices.

ロンス部とスモンスモントモ

The Poincaré supergroup.

Recall that the Poincaré group

$$P = \mathrm{O}(1,3) \, \land \mathbb{R}^{1,3}$$

is the group of isometries of the Minkowski space $\mathbb{R}^{1,3}$; it is the full symmetry of special Relativity.

In quantum field theory, unitary representations of P classify free elementary particles.

Sometimes *P* is defined as $P = \text{Spin}(1,3) \times \mathbb{R}^{1,3}$.

More generally, $P = \text{Spin}(V) \land V$, $V = \mathbb{R}^{1,n-1}$ or $V = \mathbb{R}^{p,q}$

Linear superalgebra Superdomains Supermanifolds Supersymmetries

The Poincaré algebra $\mathfrak{p} = \mathfrak{so}(V) \ltimes V$, $V = \mathbb{R}^{1,n-1}$,

$$[A,B] = [A,B]_{\mathfrak{so}(V)}, \ [A,X] = AX, \ [X,Y] = 0, \ A,B \in \mathfrak{so}(V), \ X,Y \in V.$$

N-extended Poincaré superalgebra is a Lie superalgebra

$$\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}, \quad \mathfrak{g}_{\bar{0}} = \mathfrak{p},$$

 $\mathfrak{g}_{\overline{1}}$ is the direct sum of N spinor modules of $\mathfrak{so}(V)$,

 $[V, \mathfrak{g}_{\bar{1}}] = 0$, $[\cdot, \cdot]|_{\mathfrak{so}(V) \times \mathfrak{g}_{\bar{1}}}$ is given by the spinor representation, $[\mathfrak{g}_{\bar{1}}, \mathfrak{g}_{\bar{1}}] \subset V.$

N-extended Poincaré supergroup is the Lie supergroup given by the Harish-Chandra pair (P, \mathfrak{g}) . In supersymmetric quantum theory, irreducible unitary representations of the Poincaré superalgebra classify elementary superparticles. The restriction of the representation to the underlying Poincaré algebra gives several irreducible representations of it, i.e. a collection of ordinary particles, called *multiplet*. The members of the multiplet are called superpartners of each-other.

(4) (5) (4) (5) (4)

Linear superalgebra Superdomains Supermanifolds Supersymmetries

Classification of *N*-extended Poincaré superalgebras:

D.V. Alekseevsky, V. Cortés 1997.

Example. N = 1

$$\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}, \quad \mathfrak{g}_{\overline{0}} = \mathfrak{p}, \quad \mathfrak{g}_{\overline{1}} = S,$$

it is enough to describe all $\mathfrak{so}(V)$ -equivariant maps

$$[\cdot,\cdot]|_{S\otimes S}: \mathrm{Sym}^2 S \to V,$$

the dimension of the space of such maps is the multiplicity of V in the $\mathfrak{so}(V)$ -module Sym²V.

$$\text{Let } n=4, \quad \mathfrak{g}=\mathfrak{p}\oplus\mathfrak{g}_{\bar{1}}, \quad \mathfrak{p}=\mathfrak{so}(1,3)\ltimes\mathbb{R}^{1,3}.$$

イロト イヨト イヨト イヨト

Minkowski superspace \mathcal{M} is the super Lie group given by super Harish-Chandra pair $(V, V \oplus S)$, where V is the Minkowski space (considered as the abilian Lie group), $V \oplus S \subset \mathfrak{g}$ is the subalgebra, in particular, [V, V] = [V, S] = 0, [S, S] = 0.

The Poincaré supergroup ${\mathcal P}$ is the group of supersymmetries of ${\mathcal M}.$

The field equations on \mathcal{M} should be invariant w.r.t. the action of \mathcal{P} .

(ロ) (同) (E) (E) (E)

Linear superalgebra Superdomains Supermanifolds Supersymmetries

 $\mathcal{M} = \mathbb{R}^{4|4} \text{ with the coordinates } x^1, ..., x^4, \xi^1, ..., \xi^4$ $\mathfrak{g} = \mathfrak{p} \oplus S, \quad \mathfrak{p} = \mathfrak{so}(1,3) \ltimes \mathbb{R}^{1,3}, \quad S = \mathbb{R}^4 \text{ (Majorana spinors)}$ $P_0, ..., P_3 \in \mathbb{R}^{1,3}, \quad Q_1, ..., Q_4 \in S, \quad [Q_\alpha, Q_\beta] = \Gamma^i_{\alpha\beta} P_i$

The representation of the supersymmetry:

$$egin{aligned} D_i &= \partial_i, \ D_{ij} &= x^i \partial_j - x^j \partial_i + rac{1}{2} (\gamma_{ij})^lpha_eta \xi^eta \partial_lpha, \ D_lpha &= rac{1}{2} \Gamma^i_{lphaeta} \xi^eta \partial_i + \partial_lpha. \end{aligned}$$

Super conformal algebra of Wess and Zumino (1974).

This is the first known example of a simple Lie algebra.

$$egin{aligned} \mathfrak{g}_{ar{0}} &= \mathfrak{so}(4,2) \oplus \mathfrak{u}(1) \simeq \mathfrak{su}(2,2) \oplus \mathfrak{u}(1), & \mathfrak{g}_{ar{1}} = \mathbb{C}^{2,2}, \ \mathfrak{g} &= \mathfrak{su}(2,2|1) = \mathfrak{osp}(4,4|2) \cap \mathfrak{sl}(4|2,\mathbb{C}) \end{aligned}$$

Note that $SO^{0}(4,2)$ is the connected group of isometries of AdS^{5} .

The corresponding homogenious superspace is $AdS^{5|8}$.

イロト イポト イヨト イヨト